基于正交频分复用的光保真度调制技术综述

IF 1.6 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Rahmayati Alindra, P. Priambodo, K. Ramli
{"title":"基于正交频分复用的光保真度调制技术综述","authors":"Rahmayati Alindra, P. Priambodo, K. Ramli","doi":"10.3390/jlpea13030046","DOIUrl":null,"url":null,"abstract":"Light Fidelity (LiFi) technology has gained attention and is growing rapidly today. Utilizing light as a propagation medium allows LiFi to promise a wider bandwidth than existing Wireless Fidelity (WiFi) technology and enables the implementation of cellular technology to improve bandwidth utilization. In addition, LiFi is very attractive because it can utilize lighting facilities consisting of light-emitting diodes (LEDs). A LiFi system that uses intensity modulation and direct detection requires the signal of orthogonal frequency division multiplexing (OFDM) to have a real and non-negative value; therefore, certain adjustments must be made. The proposed methods for generating unipolar signals vary from adding a direct current, clipping the signal, superposing several unipolar signals, and hybrid methods as in DC-biased optical (DCO)-OFDM, asymmetrically clipped optical (ACO)-OFDM, layered ACO (LACO)-OFDM, and asymmetrically clipped DC-biased optical (ADO)-OFDM, respectively. In this paper, we review and compare various modulation techniques to support the implementation of LiFi systems using commercial LEDs. The main objective is to obtain a modulation technique with good energy efficiency, efficient spectrum utilization, and low computational complexity so that it is easy for us to apply it in experiments on a laboratory scale.","PeriodicalId":38100,"journal":{"name":"Journal of Low Power Electronics and Applications","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of Orthogonal Frequency Division Multiplexing-Based Modulation Techniques for Light Fidelity\",\"authors\":\"Rahmayati Alindra, P. Priambodo, K. Ramli\",\"doi\":\"10.3390/jlpea13030046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light Fidelity (LiFi) technology has gained attention and is growing rapidly today. Utilizing light as a propagation medium allows LiFi to promise a wider bandwidth than existing Wireless Fidelity (WiFi) technology and enables the implementation of cellular technology to improve bandwidth utilization. In addition, LiFi is very attractive because it can utilize lighting facilities consisting of light-emitting diodes (LEDs). A LiFi system that uses intensity modulation and direct detection requires the signal of orthogonal frequency division multiplexing (OFDM) to have a real and non-negative value; therefore, certain adjustments must be made. The proposed methods for generating unipolar signals vary from adding a direct current, clipping the signal, superposing several unipolar signals, and hybrid methods as in DC-biased optical (DCO)-OFDM, asymmetrically clipped optical (ACO)-OFDM, layered ACO (LACO)-OFDM, and asymmetrically clipped DC-biased optical (ADO)-OFDM, respectively. In this paper, we review and compare various modulation techniques to support the implementation of LiFi systems using commercial LEDs. The main objective is to obtain a modulation technique with good energy efficiency, efficient spectrum utilization, and low computational complexity so that it is easy for us to apply it in experiments on a laboratory scale.\",\"PeriodicalId\":38100,\"journal\":{\"name\":\"Journal of Low Power Electronics and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Power Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jlpea13030046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jlpea13030046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

光保真(LiFi)技术已经引起了人们的关注,并在今天迅速发展。利用光作为传播介质允许LiFi承诺比现有的无线保真(WiFi)技术更宽的带宽,并使蜂窝技术的实现能够提高带宽利用率。此外,LiFi非常有吸引力,因为它可以利用由发光二极管(LED)组成的照明设施。使用强度调制和直接检测的LiFi系统要求正交频分复用(OFDM)的信号具有实数和非负值;因此,必须作出某些调整。所提出的生成单极性信号的方法不同于添加直流电、削波信号、叠加几个单极性信号,以及分别在DC偏置光(DCO)-OFDM、非对称削波光(ACO)-OFDMA、分层ACO(LACO)-OOFDM和非对称削波光(ADO)-OFDM。在本文中,我们回顾并比较了支持使用商用LED实现LiFi系统的各种调制技术。主要目标是获得一种具有良好能量效率、高效频谱利用率和低计算复杂度的调制技术,以便我们能够容易地将其应用于实验室规模的实验中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review of Orthogonal Frequency Division Multiplexing-Based Modulation Techniques for Light Fidelity
Light Fidelity (LiFi) technology has gained attention and is growing rapidly today. Utilizing light as a propagation medium allows LiFi to promise a wider bandwidth than existing Wireless Fidelity (WiFi) technology and enables the implementation of cellular technology to improve bandwidth utilization. In addition, LiFi is very attractive because it can utilize lighting facilities consisting of light-emitting diodes (LEDs). A LiFi system that uses intensity modulation and direct detection requires the signal of orthogonal frequency division multiplexing (OFDM) to have a real and non-negative value; therefore, certain adjustments must be made. The proposed methods for generating unipolar signals vary from adding a direct current, clipping the signal, superposing several unipolar signals, and hybrid methods as in DC-biased optical (DCO)-OFDM, asymmetrically clipped optical (ACO)-OFDM, layered ACO (LACO)-OFDM, and asymmetrically clipped DC-biased optical (ADO)-OFDM, respectively. In this paper, we review and compare various modulation techniques to support the implementation of LiFi systems using commercial LEDs. The main objective is to obtain a modulation technique with good energy efficiency, efficient spectrum utilization, and low computational complexity so that it is easy for us to apply it in experiments on a laboratory scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Low Power Electronics and Applications
Journal of Low Power Electronics and Applications Engineering-Electrical and Electronic Engineering
CiteScore
3.60
自引率
14.30%
发文量
57
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信