{"title":"闭黎曼流形中基本曲面的单周期清扫估计","authors":"S. Sabourau","doi":"10.1353/ajm.2020.0031","DOIUrl":null,"url":null,"abstract":"abstract:We present new free-curvature one-cycle sweepout estimates in Riemannian geometry, both on surfaces and in higher dimension. More precisely, we derive upper bounds on the length of one-parameter families of one-cycles sweeping out essential surfaces in closed Riemannian manifolds. In particular, we show that there exists a homotopically substantial one-cycle sweepout of the essential sphere in the complex projective space, endowed with an arbitrary Riemannian metric, whose one-cycle length is bounded in terms of the volume (or diameter) of the manifold. This is the first estimate on sweepout volume in higher dimension without curvature assumption. We also give a detailed account of the situation for compact Riemannian surfaces with or without boundary, in relation with questions raised by P.~Buser and L.~Guth.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"142 1","pages":"1051 - 1082"},"PeriodicalIF":1.7000,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1353/ajm.2020.0031","citationCount":"2","resultStr":"{\"title\":\"One-Cycle Sweepout Estimates of Essential Surfaces in Closed Riemannian Manifolds\",\"authors\":\"S. Sabourau\",\"doi\":\"10.1353/ajm.2020.0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"abstract:We present new free-curvature one-cycle sweepout estimates in Riemannian geometry, both on surfaces and in higher dimension. More precisely, we derive upper bounds on the length of one-parameter families of one-cycles sweeping out essential surfaces in closed Riemannian manifolds. In particular, we show that there exists a homotopically substantial one-cycle sweepout of the essential sphere in the complex projective space, endowed with an arbitrary Riemannian metric, whose one-cycle length is bounded in terms of the volume (or diameter) of the manifold. This is the first estimate on sweepout volume in higher dimension without curvature assumption. We also give a detailed account of the situation for compact Riemannian surfaces with or without boundary, in relation with questions raised by P.~Buser and L.~Guth.\",\"PeriodicalId\":7453,\"journal\":{\"name\":\"American Journal of Mathematics\",\"volume\":\"142 1\",\"pages\":\"1051 - 1082\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1353/ajm.2020.0031\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2020.0031\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2020.0031","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
One-Cycle Sweepout Estimates of Essential Surfaces in Closed Riemannian Manifolds
abstract:We present new free-curvature one-cycle sweepout estimates in Riemannian geometry, both on surfaces and in higher dimension. More precisely, we derive upper bounds on the length of one-parameter families of one-cycles sweeping out essential surfaces in closed Riemannian manifolds. In particular, we show that there exists a homotopically substantial one-cycle sweepout of the essential sphere in the complex projective space, endowed with an arbitrary Riemannian metric, whose one-cycle length is bounded in terms of the volume (or diameter) of the manifold. This is the first estimate on sweepout volume in higher dimension without curvature assumption. We also give a detailed account of the situation for compact Riemannian surfaces with or without boundary, in relation with questions raised by P.~Buser and L.~Guth.
期刊介绍:
The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.