椭圆曲线上伽罗瓦表示纠缠的分类

IF 1.3 2区 数学 Q1 MATHEMATICS
Harris B. Daniels, 'Alvaro Lozano-Robledo, J. Morrow
{"title":"椭圆曲线上伽罗瓦表示纠缠的分类","authors":"Harris B. Daniels, 'Alvaro Lozano-Robledo, J. Morrow","doi":"10.4171/rmi/1424","DOIUrl":null,"url":null,"abstract":"Let $E/\\mathbb{Q}$ be an elliptic curve, let $\\overline{\\mathbb{Q}}$ be a fixed algebraic closure of $\\mathbb{Q}$, and let $G_{\\mathbb{Q}}=\\text{Gal}(\\overline{\\mathbb{Q}}/\\mathbb{Q})$ be the absolute Galois group of $\\mathbb{Q}$. The action of $G_{\\mathbb{Q}}$ on the adelic Tate module of $E$ induces the adelic Galois representation $\\rho_E\\colon G_{\\mathbb{Q}} \\to \\text{GL}(2,\\widehat{\\mathbb{Z}}).$ The goal of this paper is to explain how the image of $\\rho_E$ can be smaller than expected. To this end, we offer a group theoretic categorization of different ways in which an entanglement between division fields can be explained and prove several results on elliptic curves (and more generally, principally polarized abelian varieties) over $\\mathbb{Q}$ where the entanglement occurs over an abelian extension.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Towards a classification of entanglements of Galois representations attached to elliptic curves\",\"authors\":\"Harris B. Daniels, 'Alvaro Lozano-Robledo, J. Morrow\",\"doi\":\"10.4171/rmi/1424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $E/\\\\mathbb{Q}$ be an elliptic curve, let $\\\\overline{\\\\mathbb{Q}}$ be a fixed algebraic closure of $\\\\mathbb{Q}$, and let $G_{\\\\mathbb{Q}}=\\\\text{Gal}(\\\\overline{\\\\mathbb{Q}}/\\\\mathbb{Q})$ be the absolute Galois group of $\\\\mathbb{Q}$. The action of $G_{\\\\mathbb{Q}}$ on the adelic Tate module of $E$ induces the adelic Galois representation $\\\\rho_E\\\\colon G_{\\\\mathbb{Q}} \\\\to \\\\text{GL}(2,\\\\widehat{\\\\mathbb{Z}}).$ The goal of this paper is to explain how the image of $\\\\rho_E$ can be smaller than expected. To this end, we offer a group theoretic categorization of different ways in which an entanglement between division fields can be explained and prove several results on elliptic curves (and more generally, principally polarized abelian varieties) over $\\\\mathbb{Q}$ where the entanglement occurs over an abelian extension.\",\"PeriodicalId\":49604,\"journal\":{\"name\":\"Revista Matematica Iberoamericana\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matematica Iberoamericana\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rmi/1424\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1424","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

设$E/\mathbb{Q}$为一条椭圆曲线,$\overline{\mathbb{Q}}$为$\mathbb{Q}$的一个固定代数闭包,$G_{\mathbb{Q}}=\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$为$\mathbb{Q}$的绝对伽罗瓦群。$G_{\mathbb{Q}}$对$E$的adelic Tate模块的作用诱导出adelic Galois表示$\rho_E\colon G_{\mathbb{Q}} \to \text{GL}(2,\widehat{\mathbb{Z}}).$本文的目的是解释$\rho_E$的图像如何比预期的小。为此,我们提供了一种不同的群论分类,其中分域之间的纠缠可以解释,并证明了在$\mathbb{Q}$上的椭圆曲线(更一般地说,主要是极化阿贝尔变体)上的几个结果,其中纠缠发生在阿贝尔扩展上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a classification of entanglements of Galois representations attached to elliptic curves
Let $E/\mathbb{Q}$ be an elliptic curve, let $\overline{\mathbb{Q}}$ be a fixed algebraic closure of $\mathbb{Q}$, and let $G_{\mathbb{Q}}=\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ be the absolute Galois group of $\mathbb{Q}$. The action of $G_{\mathbb{Q}}$ on the adelic Tate module of $E$ induces the adelic Galois representation $\rho_E\colon G_{\mathbb{Q}} \to \text{GL}(2,\widehat{\mathbb{Z}}).$ The goal of this paper is to explain how the image of $\rho_E$ can be smaller than expected. To this end, we offer a group theoretic categorization of different ways in which an entanglement between division fields can be explained and prove several results on elliptic curves (and more generally, principally polarized abelian varieties) over $\mathbb{Q}$ where the entanglement occurs over an abelian extension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信