经典复Monge-Ampere方程的可移动奇点连续性方法

IF 1.2 2区 数学 Q1 MATHEMATICS
Antonio Trusiani
{"title":"经典复Monge-Ampere方程的可移动奇点连续性方法","authors":"Antonio Trusiani","doi":"10.1512/iumj.2023.72.9316","DOIUrl":null,"url":null,"abstract":"On a compact K\\\"ahler manifold $(X,\\omega)$, we study the strong continuity of solutions with prescribed singularities of complex Monge-Amp\\`ere equations with integrable Lebesgue densities. Moreover, we give sufficient conditions for the strong continuity of solutions when the right-hand sides are modified to include all (log) K\\\"ahler-Einstein metrics with prescribed singularities. Our findings can be interpreted as closedness of new continuity methods in which the densities vary together with the prescribed singularities. For Monge-Amp\\`ere equations of Fano type, we also prove an openness result when the singularities decrease. As an application, we deduce a strong stability result for (log-)K\\\"ahler Einstein metrics on semi-K\\\"ahler classes given as modifications of $\\{\\omega\\}$.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Continuity method with movable singularities for classical complex Monge-Ampere equations\",\"authors\":\"Antonio Trusiani\",\"doi\":\"10.1512/iumj.2023.72.9316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On a compact K\\\\\\\"ahler manifold $(X,\\\\omega)$, we study the strong continuity of solutions with prescribed singularities of complex Monge-Amp\\\\`ere equations with integrable Lebesgue densities. Moreover, we give sufficient conditions for the strong continuity of solutions when the right-hand sides are modified to include all (log) K\\\\\\\"ahler-Einstein metrics with prescribed singularities. Our findings can be interpreted as closedness of new continuity methods in which the densities vary together with the prescribed singularities. For Monge-Amp\\\\`ere equations of Fano type, we also prove an openness result when the singularities decrease. As an application, we deduce a strong stability result for (log-)K\\\\\\\"ahler Einstein metrics on semi-K\\\\\\\"ahler classes given as modifications of $\\\\{\\\\omega\\\\}$.\",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2023.72.9316\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9316","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

在紧致K\“ahler流形$(X,\omega)$上,我们研究了具有可积Lebesgue密度的复Monge-Amp’ere方程的具有指定奇点的解的强连续性。此外,当右手边被修改为包括所有具有指定奇点(log)K\”ahler-Enstein度量时,我们给出了解的强持续性的充分条件。我们的发现可以被解释为新的连续性方法的封闭性,其中密度与规定的奇点一起变化。对于Fano型Monge-Ampere方程,我们还证明了当奇点减少时的一个开放性结果。作为一个应用,我们推导了半K类上的(log-)K“ahler-Enstein度量的强稳定性结果,给出了$\{\omega\}$的修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuity method with movable singularities for classical complex Monge-Ampere equations
On a compact K\"ahler manifold $(X,\omega)$, we study the strong continuity of solutions with prescribed singularities of complex Monge-Amp\`ere equations with integrable Lebesgue densities. Moreover, we give sufficient conditions for the strong continuity of solutions when the right-hand sides are modified to include all (log) K\"ahler-Einstein metrics with prescribed singularities. Our findings can be interpreted as closedness of new continuity methods in which the densities vary together with the prescribed singularities. For Monge-Amp\`ere equations of Fano type, we also prove an openness result when the singularities decrease. As an application, we deduce a strong stability result for (log-)K\"ahler Einstein metrics on semi-K\"ahler classes given as modifications of $\{\omega\}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信