{"title":"费马椭圆曲线扭转中心l值的Tamagawa数可整除性","authors":"Yukako Kezuka","doi":"10.5802/jtnb.1183","DOIUrl":null,"url":null,"abstract":"Given any integer $N>1$ prime to $3$, we denote by $C_N$ the elliptic curve $x^3+y^3=N$. We first study the $3$-adic valuation of the algebraic part of the value of the Hasse-Weil $L$-function $L(C_N,s)$ of $C_N$ over $\\mathbb{Q}$ at $s=1$, and we exhibit a relation between the $3$-part of its Tate-Shafarevich group and the number of distinct prime divisors of $N$ which are inert in the imaginary quadratic field $K=\\mathbb{Q}(\\sqrt{-3})$. In the case where $L(C_N,1)\\neq 0$ and $N$ is a product of split primes in $K$, we show that the order of the Tate-Shafarevich group as predicted by the conjecture of Birch and Swinnerton-Dyer is a perfect square.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Tamagawa number divisibility of central L-values of twists of the Fermat elliptic curve\",\"authors\":\"Yukako Kezuka\",\"doi\":\"10.5802/jtnb.1183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given any integer $N>1$ prime to $3$, we denote by $C_N$ the elliptic curve $x^3+y^3=N$. We first study the $3$-adic valuation of the algebraic part of the value of the Hasse-Weil $L$-function $L(C_N,s)$ of $C_N$ over $\\\\mathbb{Q}$ at $s=1$, and we exhibit a relation between the $3$-part of its Tate-Shafarevich group and the number of distinct prime divisors of $N$ which are inert in the imaginary quadratic field $K=\\\\mathbb{Q}(\\\\sqrt{-3})$. In the case where $L(C_N,1)\\\\neq 0$ and $N$ is a product of split primes in $K$, we show that the order of the Tate-Shafarevich group as predicted by the conjecture of Birch and Swinnerton-Dyer is a perfect square.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tamagawa number divisibility of central L-values of twists of the Fermat elliptic curve
Given any integer $N>1$ prime to $3$, we denote by $C_N$ the elliptic curve $x^3+y^3=N$. We first study the $3$-adic valuation of the algebraic part of the value of the Hasse-Weil $L$-function $L(C_N,s)$ of $C_N$ over $\mathbb{Q}$ at $s=1$, and we exhibit a relation between the $3$-part of its Tate-Shafarevich group and the number of distinct prime divisors of $N$ which are inert in the imaginary quadratic field $K=\mathbb{Q}(\sqrt{-3})$. In the case where $L(C_N,1)\neq 0$ and $N$ is a product of split primes in $K$, we show that the order of the Tate-Shafarevich group as predicted by the conjecture of Birch and Swinnerton-Dyer is a perfect square.