{"title":"绝对Lipschitz可拓性和线性投影常数","authors":"Giuliano Basso","doi":"10.4064/sm210708-21-9","DOIUrl":null,"url":null,"abstract":"We prove that the absolute extendability constant of a finite metric space may be determined by computing relative projection constants of certain Lipschitz-free spaces. As an application, we show that $\\mbox{ae}(3)=4/3$ and $\\mbox{ae}(4)\\geq (5+4\\sqrt{2})/7$. Moreover, we discuss how to compute relative projection constants by solving linear programming problems.","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Absolute Lipschitz extendability and linear projection constants\",\"authors\":\"Giuliano Basso\",\"doi\":\"10.4064/sm210708-21-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the absolute extendability constant of a finite metric space may be determined by computing relative projection constants of certain Lipschitz-free spaces. As an application, we show that $\\\\mbox{ae}(3)=4/3$ and $\\\\mbox{ae}(4)\\\\geq (5+4\\\\sqrt{2})/7$. Moreover, we discuss how to compute relative projection constants by solving linear programming problems.\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/sm210708-21-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm210708-21-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Absolute Lipschitz extendability and linear projection constants
We prove that the absolute extendability constant of a finite metric space may be determined by computing relative projection constants of certain Lipschitz-free spaces. As an application, we show that $\mbox{ae}(3)=4/3$ and $\mbox{ae}(4)\geq (5+4\sqrt{2})/7$. Moreover, we discuss how to compute relative projection constants by solving linear programming problems.
期刊介绍:
The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.