绝对Lipschitz可拓性和线性投影常数

IF 0.7 3区 数学 Q2 MATHEMATICS
Giuliano Basso
{"title":"绝对Lipschitz可拓性和线性投影常数","authors":"Giuliano Basso","doi":"10.4064/sm210708-21-9","DOIUrl":null,"url":null,"abstract":"We prove that the absolute extendability constant of a finite metric space may be determined by computing relative projection constants of certain Lipschitz-free spaces. As an application, we show that $\\mbox{ae}(3)=4/3$ and $\\mbox{ae}(4)\\geq (5+4\\sqrt{2})/7$. Moreover, we discuss how to compute relative projection constants by solving linear programming problems.","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Absolute Lipschitz extendability and linear projection constants\",\"authors\":\"Giuliano Basso\",\"doi\":\"10.4064/sm210708-21-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the absolute extendability constant of a finite metric space may be determined by computing relative projection constants of certain Lipschitz-free spaces. As an application, we show that $\\\\mbox{ae}(3)=4/3$ and $\\\\mbox{ae}(4)\\\\geq (5+4\\\\sqrt{2})/7$. Moreover, we discuss how to compute relative projection constants by solving linear programming problems.\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/sm210708-21-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm210708-21-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

证明了有限度量空间的绝对可拓常数可以通过计算某些Lipschitz-free空间的相对投影常数来确定。作为一个应用程序,我们显示$\mbox{ae}(3)=4/3$和$\mbox{ae}(4)\geq (5+4\sqrt{2})/7$。此外,我们还讨论了如何通过求解线性规划问题来计算相对投影常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Absolute Lipschitz extendability and linear projection constants
We prove that the absolute extendability constant of a finite metric space may be determined by computing relative projection constants of certain Lipschitz-free spaces. As an application, we show that $\mbox{ae}(3)=4/3$ and $\mbox{ae}(4)\geq (5+4\sqrt{2})/7$. Moreover, we discuss how to compute relative projection constants by solving linear programming problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信