气体离子液膜去除吸入麻醉系统CO2的数值研究

IF 2.8 Q2 ENGINEERING, CHEMICAL
A. Davidy
{"title":"气体离子液膜去除吸入麻醉系统CO2的数值研究","authors":"A. Davidy","doi":"10.3390/chemengineering7040060","DOIUrl":null,"url":null,"abstract":"Inhalational anesthesia is supplied through an assisted ventilation system. It is mostly composed of xenon or nitrous oxide, halogenated hydrocarbons (HHCs), and oxygen. In order to reduce costs of the anesthesia compounds, the remaining anesthetics present in exhalation are recycled and reused, in order to minimize the amount of fresh anesthesia. An alkali hydroxide mixture (called soda lime) is employed in order to remove CO2 from the exhalation. However toxic compounds may be formed during the reaction of soda lime with halogenated hydrocarbons. Ionic liquids (ILs) have several advantages such as non-volatility, functionality, high carbon solubility, and low energy requirements for regeneration. In the framework of this research, carbon dioxide removal with ionic liquids has been numerically studied. COMSOL multi-physics finite element software has been applied. It solves the continuity, fluid flow, and diffusion equations. A new algorithm has been developed for calculating the infrared (IR) radiation absorption of CO2. Its absorption coefficient has wavelength-dependent properties. The gaseous absorption coefficient has been calculated by using HITRAN spectral database. It has been found that the CO2 is absorbed almost completely by the 1-ethyl-3-methylimidazolium dicyanamide ([emim][DCA]) ionic liquid after a period of 1000 s. It has been shown that the absorption coefficient of CO2 can be neglected in the interval below 1.565 μm, and then at 1.6 μm, it increases to the same order as that for CO. Thus, it is possible to detect CO2 by applying a laser diode which is capable to transmit IR radiation at a wavelength of 1.6 μm. This time period is a function of the diffusion coefficient of the CO2 in the membrane and in the ionic liquid.","PeriodicalId":9755,"journal":{"name":"ChemEngineering","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Study of CO2 Removal from Inhalational Anesthesia System by Using Gas-Ionic Liquid Membrane\",\"authors\":\"A. Davidy\",\"doi\":\"10.3390/chemengineering7040060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inhalational anesthesia is supplied through an assisted ventilation system. It is mostly composed of xenon or nitrous oxide, halogenated hydrocarbons (HHCs), and oxygen. In order to reduce costs of the anesthesia compounds, the remaining anesthetics present in exhalation are recycled and reused, in order to minimize the amount of fresh anesthesia. An alkali hydroxide mixture (called soda lime) is employed in order to remove CO2 from the exhalation. However toxic compounds may be formed during the reaction of soda lime with halogenated hydrocarbons. Ionic liquids (ILs) have several advantages such as non-volatility, functionality, high carbon solubility, and low energy requirements for regeneration. In the framework of this research, carbon dioxide removal with ionic liquids has been numerically studied. COMSOL multi-physics finite element software has been applied. It solves the continuity, fluid flow, and diffusion equations. A new algorithm has been developed for calculating the infrared (IR) radiation absorption of CO2. Its absorption coefficient has wavelength-dependent properties. The gaseous absorption coefficient has been calculated by using HITRAN spectral database. It has been found that the CO2 is absorbed almost completely by the 1-ethyl-3-methylimidazolium dicyanamide ([emim][DCA]) ionic liquid after a period of 1000 s. It has been shown that the absorption coefficient of CO2 can be neglected in the interval below 1.565 μm, and then at 1.6 μm, it increases to the same order as that for CO. Thus, it is possible to detect CO2 by applying a laser diode which is capable to transmit IR radiation at a wavelength of 1.6 μm. This time period is a function of the diffusion coefficient of the CO2 in the membrane and in the ionic liquid.\",\"PeriodicalId\":9755,\"journal\":{\"name\":\"ChemEngineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemEngineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/chemengineering7040060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemengineering7040060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

摘要

吸入麻醉通过辅助通气系统提供。它主要由氙或氧化亚氮、卤代烃(hhc)和氧组成。为了降低麻醉化合物的成本,在呼气中存在的剩余麻醉剂被回收和再利用,以尽量减少新鲜麻醉的量。一种氢氧化碱混合物(称为苏打石灰)被用来去除呼出气体中的二氧化碳。然而,钠石灰与卤代烃反应时可能产生有毒化合物。离子液体具有非挥发性、功能性、高碳溶解度和低再生能量要求等优点。在本研究的框架内,对离子液体去除二氧化碳进行了数值研究。采用COMSOL多物理场有限元软件。它解决了连续性、流体流动和扩散方程。提出了一种计算CO2红外辐射吸收的新算法。其吸收系数具有波长依赖性。利用HITRAN光谱数据库计算了气体吸收系数。研究发现,1-乙基-3-甲基咪唑双氰酰胺([emim][DCA])离子液体在1000 s后几乎完全吸收CO2。结果表明,在1.565 μm以下,CO2的吸收系数可以忽略不计,而在1.6 μm处,CO2的吸收系数增大到与CO的吸收系数相同的数量级。因此,采用能够传输波长为1.6 μm的红外辐射的激光二极管可以检测CO2。这个时间周期是CO2在膜和离子液体中的扩散系数的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Study of CO2 Removal from Inhalational Anesthesia System by Using Gas-Ionic Liquid Membrane
Inhalational anesthesia is supplied through an assisted ventilation system. It is mostly composed of xenon or nitrous oxide, halogenated hydrocarbons (HHCs), and oxygen. In order to reduce costs of the anesthesia compounds, the remaining anesthetics present in exhalation are recycled and reused, in order to minimize the amount of fresh anesthesia. An alkali hydroxide mixture (called soda lime) is employed in order to remove CO2 from the exhalation. However toxic compounds may be formed during the reaction of soda lime with halogenated hydrocarbons. Ionic liquids (ILs) have several advantages such as non-volatility, functionality, high carbon solubility, and low energy requirements for regeneration. In the framework of this research, carbon dioxide removal with ionic liquids has been numerically studied. COMSOL multi-physics finite element software has been applied. It solves the continuity, fluid flow, and diffusion equations. A new algorithm has been developed for calculating the infrared (IR) radiation absorption of CO2. Its absorption coefficient has wavelength-dependent properties. The gaseous absorption coefficient has been calculated by using HITRAN spectral database. It has been found that the CO2 is absorbed almost completely by the 1-ethyl-3-methylimidazolium dicyanamide ([emim][DCA]) ionic liquid after a period of 1000 s. It has been shown that the absorption coefficient of CO2 can be neglected in the interval below 1.565 μm, and then at 1.6 μm, it increases to the same order as that for CO. Thus, it is possible to detect CO2 by applying a laser diode which is capable to transmit IR radiation at a wavelength of 1.6 μm. This time period is a function of the diffusion coefficient of the CO2 in the membrane and in the ionic liquid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemEngineering
ChemEngineering Engineering-Engineering (all)
CiteScore
4.00
自引率
4.00%
发文量
88
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信