Hadamard型奇异分数微分方程特征值问题的上下解方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xinguang Zhang, Dezhou Kong, Hui Tian, Yonghong Wu, B. Wiwatanapataphee
{"title":"Hadamard型奇异分数微分方程特征值问题的上下解方法","authors":"Xinguang Zhang, Dezhou Kong, Hui Tian, Yonghong Wu, B. Wiwatanapataphee","doi":"10.15388/namc.2022.27.27491","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with the eigenvalue problem of Hadamard-type singular fractional differential equations with multi-point boundary conditions. By constructing the upper and lower solutions of the eigenvalue problem and using the properties of the Green function, the eigenvalue interval of the problem is established via Schauder’s fixed point theorem. The main contribution of this work is on tackling the nonlinearity which possesses singularity on some space variables.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An upper-lower solution method for the eigenvalue problem of Hadamard-type singular fractional differential equation\",\"authors\":\"Xinguang Zhang, Dezhou Kong, Hui Tian, Yonghong Wu, B. Wiwatanapataphee\",\"doi\":\"10.15388/namc.2022.27.27491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are concerned with the eigenvalue problem of Hadamard-type singular fractional differential equations with multi-point boundary conditions. By constructing the upper and lower solutions of the eigenvalue problem and using the properties of the Green function, the eigenvalue interval of the problem is established via Schauder’s fixed point theorem. The main contribution of this work is on tackling the nonlinearity which possesses singularity on some space variables.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15388/namc.2022.27.27491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2022.27.27491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 8

摘要

本文研究具有多点边界条件的hadamard型奇异分数阶微分方程的特征值问题。通过构造特征值问题的上解和下解,利用格林函数的性质,利用Schauder不动点定理建立了该问题的特征值区间。这一工作的主要贡献在于解决了在某些空间变量上具有奇异性的非线性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An upper-lower solution method for the eigenvalue problem of Hadamard-type singular fractional differential equation
In this paper, we are concerned with the eigenvalue problem of Hadamard-type singular fractional differential equations with multi-point boundary conditions. By constructing the upper and lower solutions of the eigenvalue problem and using the properties of the Green function, the eigenvalue interval of the problem is established via Schauder’s fixed point theorem. The main contribution of this work is on tackling the nonlinearity which possesses singularity on some space variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信