Magnus Kircher, Sebastian Popp, Sandro Gierth, Andrea Pati, Jonathan Schneider, Marco Günther, Christian Hasse
{"title":"一种具有NTC性能的多组分替代燃料在爆震条件下的发动机燃烧和自动点火研究","authors":"Magnus Kircher, Sebastian Popp, Sandro Gierth, Andrea Pati, Jonathan Schneider, Marco Günther, Christian Hasse","doi":"10.1007/s10494-022-00351-9","DOIUrl":null,"url":null,"abstract":"<div><p>The occurrence of knocking combustion is limiting the efficiency of modern spark ignition engine operation. Thus, an understanding of the processes at the knock limit is required for further optimization of the combustion process. In this work, the combustion of a multicomponent Toluene Reference Fuel (TRF) in a single-cylinder research engine is investigated under knocking conditions. The fuel exhibits a negative temperature coefficient (NTC) regime for thermodynamic conditions relevant to the engine operation. A precursor model is used to capture the auto-ignition process. Under homogeneous conditions, a two-stage auto-ignition is observed. Inside the NTC regime, the temperature affects both first-stage and second-stage auto-ignition delay times. With a subsequently conducted multi-cycle engine LES, the effects of temperature stratification and turbulent flame propagation on the local auto-ignition process are investigated. It is observed, that the NTC behavior leads to a widespread two-stage auto-ignition. The knock intensity observed in the experiments is directly related to the mass consumed by auto-ignition. This is due to the fast consumption of the auto-ignited mass by the flame front. With that, the NTC behavior affects the local auto-ignition process in the unburned mixture while the flame propagation determines the knock intensity for the operating conditions at the knock limit.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"110 1","pages":"149 - 169"},"PeriodicalIF":2.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-022-00351-9.pdf","citationCount":"2","resultStr":"{\"title\":\"Investigation of Engine Combustion and Auto-ignition of a Multicomponent Surrogate Fuel with NTC Behavior Under Knocking Conditions\",\"authors\":\"Magnus Kircher, Sebastian Popp, Sandro Gierth, Andrea Pati, Jonathan Schneider, Marco Günther, Christian Hasse\",\"doi\":\"10.1007/s10494-022-00351-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The occurrence of knocking combustion is limiting the efficiency of modern spark ignition engine operation. Thus, an understanding of the processes at the knock limit is required for further optimization of the combustion process. In this work, the combustion of a multicomponent Toluene Reference Fuel (TRF) in a single-cylinder research engine is investigated under knocking conditions. The fuel exhibits a negative temperature coefficient (NTC) regime for thermodynamic conditions relevant to the engine operation. A precursor model is used to capture the auto-ignition process. Under homogeneous conditions, a two-stage auto-ignition is observed. Inside the NTC regime, the temperature affects both first-stage and second-stage auto-ignition delay times. With a subsequently conducted multi-cycle engine LES, the effects of temperature stratification and turbulent flame propagation on the local auto-ignition process are investigated. It is observed, that the NTC behavior leads to a widespread two-stage auto-ignition. The knock intensity observed in the experiments is directly related to the mass consumed by auto-ignition. This is due to the fast consumption of the auto-ignited mass by the flame front. With that, the NTC behavior affects the local auto-ignition process in the unburned mixture while the flame propagation determines the knock intensity for the operating conditions at the knock limit.</p></div>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":\"110 1\",\"pages\":\"149 - 169\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10494-022-00351-9.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10494-022-00351-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-022-00351-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Investigation of Engine Combustion and Auto-ignition of a Multicomponent Surrogate Fuel with NTC Behavior Under Knocking Conditions
The occurrence of knocking combustion is limiting the efficiency of modern spark ignition engine operation. Thus, an understanding of the processes at the knock limit is required for further optimization of the combustion process. In this work, the combustion of a multicomponent Toluene Reference Fuel (TRF) in a single-cylinder research engine is investigated under knocking conditions. The fuel exhibits a negative temperature coefficient (NTC) regime for thermodynamic conditions relevant to the engine operation. A precursor model is used to capture the auto-ignition process. Under homogeneous conditions, a two-stage auto-ignition is observed. Inside the NTC regime, the temperature affects both first-stage and second-stage auto-ignition delay times. With a subsequently conducted multi-cycle engine LES, the effects of temperature stratification and turbulent flame propagation on the local auto-ignition process are investigated. It is observed, that the NTC behavior leads to a widespread two-stage auto-ignition. The knock intensity observed in the experiments is directly related to the mass consumed by auto-ignition. This is due to the fast consumption of the auto-ignited mass by the flame front. With that, the NTC behavior affects the local auto-ignition process in the unburned mixture while the flame propagation determines the knock intensity for the operating conditions at the knock limit.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.