分数阶Cesàro矩阵及其相关序列空间

IF 0.3 Q4 MATHEMATICS
H. Roopaei, M. İlkhan
{"title":"分数阶Cesàro矩阵及其相关序列空间","authors":"H. Roopaei, M. İlkhan","doi":"10.1515/conop-2020-0112","DOIUrl":null,"url":null,"abstract":"Abstract In this research, we introduce a new fractional Cesàro matrix and investigate the topological properties of the sequence space associated with this matrix.We also introduce a fractional Gamma matrix aswell and obtain some factorizations for the Hilbert operator based on Cesàro and Gamma matrices. The results of these factorizations are two new inequalities one ofwhich is a generalized version of thewell-known Hilbert’s inequality. There are also some challenging problems that authors share at the end of the manuscript and invite the researcher for trying to solve them.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"8 1","pages":"24 - 39"},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2020-0112","citationCount":"3","resultStr":"{\"title\":\"Fractional Cesàro Matrix and its Associated Sequence Space\",\"authors\":\"H. Roopaei, M. İlkhan\",\"doi\":\"10.1515/conop-2020-0112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this research, we introduce a new fractional Cesàro matrix and investigate the topological properties of the sequence space associated with this matrix.We also introduce a fractional Gamma matrix aswell and obtain some factorizations for the Hilbert operator based on Cesàro and Gamma matrices. The results of these factorizations are two new inequalities one ofwhich is a generalized version of thewell-known Hilbert’s inequality. There are also some challenging problems that authors share at the end of the manuscript and invite the researcher for trying to solve them.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":\"8 1\",\"pages\":\"24 - 39\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/conop-2020-0112\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2020-0112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2020-0112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要在本研究中,我们引入了一个新的分式Cesàro矩阵,并研究了与该矩阵相关的序列空间的拓扑性质。我们还引入了一个分数伽玛矩阵,并在Cesàro和伽玛矩阵的基础上得到了Hilbert算子的一些因子分解。这些因子分解的结果是两个新的不等式,其中一个是众所周知的希尔伯特不等式的广义版本。还有一些具有挑战性的问题,作者在手稿的末尾分享,并邀请研究人员尝试解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Cesàro Matrix and its Associated Sequence Space
Abstract In this research, we introduce a new fractional Cesàro matrix and investigate the topological properties of the sequence space associated with this matrix.We also introduce a fractional Gamma matrix aswell and obtain some factorizations for the Hilbert operator based on Cesàro and Gamma matrices. The results of these factorizations are two new inequalities one ofwhich is a generalized version of thewell-known Hilbert’s inequality. There are also some challenging problems that authors share at the end of the manuscript and invite the researcher for trying to solve them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信