{"title":"自校正递归神经网络在重症监护急性肾损伤预测中的应用","authors":"Hao Du, Ziyuan Pan, Kee Yuan Ngiam, Fei Wang, Ping Shum, Mengling Feng","doi":"10.34133/2021/9808426","DOIUrl":null,"url":null,"abstract":"<p><p><i>Background</i>. In critical care, intensivists are required to continuously monitor high-dimensional vital signs and lab measurements to detect and diagnose acute patient conditions, which has always been a challenging task. Recently, deep learning models such as recurrent neural networks (RNNs) have demonstrated their strong potential on predicting such events. However, in real deployment, the patient data are continuously coming and there is no effective adaptation mechanism for RNN to incorporate those new data and become more accurate.<i>Methods</i>. In this study, we propose a novel self-correcting mechanism for RNN to fill in this gap. Our mechanism feeds prediction errors from the predictions of previous timestamps into the prediction of the current timestamp, so that the model can \"learn\" from previous predictions. We also proposed a regularization method that takes into account not only the model's prediction errors on the labels but also its estimation errors on the input data.<i>Results</i>. We compared the performance of our proposed method with the conventional deep learning models on two real-world clinical datasets for the task of acute kidney injury (AKI) prediction and demonstrated that the proposed model achieved an area under ROC curve at 0.893 on the MIMIC-III dataset and 0.871 on the Philips eICU dataset.<i>Conclusions</i>. The proposed self-correcting RNNs demonstrated effectiveness in AKI prediction and have the potential to be applied to clinical applications.</p>","PeriodicalId":73207,"journal":{"name":"Health data science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904062/pdf/","citationCount":"0","resultStr":"{\"title\":\"Self-Correcting Recurrent Neural Network for Acute Kidney Injury Prediction in Critical Care.\",\"authors\":\"Hao Du, Ziyuan Pan, Kee Yuan Ngiam, Fei Wang, Ping Shum, Mengling Feng\",\"doi\":\"10.34133/2021/9808426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Background</i>. In critical care, intensivists are required to continuously monitor high-dimensional vital signs and lab measurements to detect and diagnose acute patient conditions, which has always been a challenging task. Recently, deep learning models such as recurrent neural networks (RNNs) have demonstrated their strong potential on predicting such events. However, in real deployment, the patient data are continuously coming and there is no effective adaptation mechanism for RNN to incorporate those new data and become more accurate.<i>Methods</i>. In this study, we propose a novel self-correcting mechanism for RNN to fill in this gap. Our mechanism feeds prediction errors from the predictions of previous timestamps into the prediction of the current timestamp, so that the model can \\\"learn\\\" from previous predictions. We also proposed a regularization method that takes into account not only the model's prediction errors on the labels but also its estimation errors on the input data.<i>Results</i>. We compared the performance of our proposed method with the conventional deep learning models on two real-world clinical datasets for the task of acute kidney injury (AKI) prediction and demonstrated that the proposed model achieved an area under ROC curve at 0.893 on the MIMIC-III dataset and 0.871 on the Philips eICU dataset.<i>Conclusions</i>. The proposed self-correcting RNNs demonstrated effectiveness in AKI prediction and have the potential to be applied to clinical applications.</p>\",\"PeriodicalId\":73207,\"journal\":{\"name\":\"Health data science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904062/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/2021/9808426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/2021/9808426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Self-Correcting Recurrent Neural Network for Acute Kidney Injury Prediction in Critical Care.
Background. In critical care, intensivists are required to continuously monitor high-dimensional vital signs and lab measurements to detect and diagnose acute patient conditions, which has always been a challenging task. Recently, deep learning models such as recurrent neural networks (RNNs) have demonstrated their strong potential on predicting such events. However, in real deployment, the patient data are continuously coming and there is no effective adaptation mechanism for RNN to incorporate those new data and become more accurate.Methods. In this study, we propose a novel self-correcting mechanism for RNN to fill in this gap. Our mechanism feeds prediction errors from the predictions of previous timestamps into the prediction of the current timestamp, so that the model can "learn" from previous predictions. We also proposed a regularization method that takes into account not only the model's prediction errors on the labels but also its estimation errors on the input data.Results. We compared the performance of our proposed method with the conventional deep learning models on two real-world clinical datasets for the task of acute kidney injury (AKI) prediction and demonstrated that the proposed model achieved an area under ROC curve at 0.893 on the MIMIC-III dataset and 0.871 on the Philips eICU dataset.Conclusions. The proposed self-correcting RNNs demonstrated effectiveness in AKI prediction and have the potential to be applied to clinical applications.