非光滑凸优化问题的共轭梯度算法

Yaping Hu, Liying Liu, Yujie Wang
{"title":"非光滑凸优化问题的共轭梯度算法","authors":"Yaping Hu, Liying Liu, Yujie Wang","doi":"10.19139/soic-2310-5070-908","DOIUrl":null,"url":null,"abstract":"This paper presents a Wei-Yao-Liu conjugate gradient algorithm for nonsmooth convex optimization problem. The proposed algorithm makes use of approximate function and gradient values of the Moreau-Yosida regularization function instead of the corresponding exact values. Under suitable conditions, the global convergence property could be established for the proposed conjugate gradient method. Finally, some numerical results are reported to show the efficiency of our algorithm.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"8 1","pages":"403-413"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wei-Yao-Liu Conjugate Gradient Algorithm for Nonsmooth Convex Optimization Problems\",\"authors\":\"Yaping Hu, Liying Liu, Yujie Wang\",\"doi\":\"10.19139/soic-2310-5070-908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Wei-Yao-Liu conjugate gradient algorithm for nonsmooth convex optimization problem. The proposed algorithm makes use of approximate function and gradient values of the Moreau-Yosida regularization function instead of the corresponding exact values. Under suitable conditions, the global convergence property could be established for the proposed conjugate gradient method. Finally, some numerical results are reported to show the efficiency of our algorithm.\",\"PeriodicalId\":93376,\"journal\":{\"name\":\"Statistics, optimization & information computing\",\"volume\":\"8 1\",\"pages\":\"403-413\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, optimization & information computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对非光滑凸优化问题,本文提出了一种Wei姚刘共轭梯度算法。该算法利用了MoreauYosida正则化函数的近似函数和梯度值,而不是相应的精确值。在适当的条件下,可以建立所提出的共轭梯度方法的全局收敛性。最后,给出了一些数值结果,验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wei-Yao-Liu Conjugate Gradient Algorithm for Nonsmooth Convex Optimization Problems
This paper presents a Wei-Yao-Liu conjugate gradient algorithm for nonsmooth convex optimization problem. The proposed algorithm makes use of approximate function and gradient values of the Moreau-Yosida regularization function instead of the corresponding exact values. Under suitable conditions, the global convergence property could be established for the proposed conjugate gradient method. Finally, some numerical results are reported to show the efficiency of our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信