多重交替符号矩阵

IF 0.7 4区 数学 Q2 Mathematics
R. Brualdi, G. Dahl
{"title":"多重交替符号矩阵","authors":"R. Brualdi, G. Dahl","doi":"10.13001/ela.2023.7471","DOIUrl":null,"url":null,"abstract":"We introduce a generalization of alternating sign matrices (ASMs) called multiASMs and develop some of their properties. Classes of multiASMs with specified row and column sum vectors $R$ and $S$ extend the classes of $(0,1)$-matrices with specified $R$ and $S$. The special case when $R=S$ is a constant vector, in particular all 2's, is treated in more detail. We also investigate the polytope spanned by a class of multiASMs. Finally, we discuss the possibility of defining a Bruhat order on a class of multiASMs.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-alternating sign matrices\",\"authors\":\"R. Brualdi, G. Dahl\",\"doi\":\"10.13001/ela.2023.7471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a generalization of alternating sign matrices (ASMs) called multiASMs and develop some of their properties. Classes of multiASMs with specified row and column sum vectors $R$ and $S$ extend the classes of $(0,1)$-matrices with specified $R$ and $S$. The special case when $R=S$ is a constant vector, in particular all 2's, is treated in more detail. We also investigate the polytope spanned by a class of multiASMs. Finally, we discuss the possibility of defining a Bruhat order on a class of multiASMs.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2023.7471\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2023.7471","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一种称为多重交替符号矩阵的交替符号矩阵(ASM)的推广,并发展了它们的一些性质。具有指定行和列和向量$R$和$S$的多ASM的类扩展了具有指定$R$或$S$的$(0,1)$矩阵的类。当$R=S$是一个常数向量时的特殊情况,特别是所有的2,将被更详细地处理。我们还研究了一类多重ASM所跨越的多面体。最后,我们讨论了在一类多重ASM上定义Bruhat阶的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-alternating sign matrices
We introduce a generalization of alternating sign matrices (ASMs) called multiASMs and develop some of their properties. Classes of multiASMs with specified row and column sum vectors $R$ and $S$ extend the classes of $(0,1)$-matrices with specified $R$ and $S$. The special case when $R=S$ is a constant vector, in particular all 2's, is treated in more detail. We also investigate the polytope spanned by a class of multiASMs. Finally, we discuss the possibility of defining a Bruhat order on a class of multiASMs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信