基于树结构线性和分位数回归的资产定价

IF 3.6 Q1 BUSINESS, FINANCE
J. Galakis, Ioannis D. Vrontos, P. Xidonas
{"title":"基于树结构线性和分位数回归的资产定价","authors":"J. Galakis, Ioannis D. Vrontos, P. Xidonas","doi":"10.1108/raf-10-2021-0283","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis study aims to introduce a tree-structured linear and quantile regression framework to the analysis and modeling of equity returns, within the context of asset pricing.\n\n\nDesign/Methodology/Approach\nThe approach is based on the idea of a binary tree, where every terminal node parameterizes a local regression model for a specific partition of the data. A Bayesian stochastic method is developed including model selection and estimation of the tree structure parameters. The framework is applied on numerous U.S. asset pricing models, using alternative mimicking factor portfolios, frequency of data, market indices, and equity portfolios.\n\n\nFindings\nThe findings reveal strong evidence that asset returns exhibit asymmetric effects and non- linear patterns to different common factors, but, more importantly, that there are multiple thresholds that create several partitions in the common factor space.\n\n\nOriginality/Value\nTo the best of the authors' knowledge, this paper is the first to explore and apply a tree-structured and quantile regression framework in an asset pricing context.\n","PeriodicalId":21152,"journal":{"name":"Review of Accounting and Finance","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On tree-structured linear and quantile regression-based asset pricing\",\"authors\":\"J. Galakis, Ioannis D. Vrontos, P. Xidonas\",\"doi\":\"10.1108/raf-10-2021-0283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis study aims to introduce a tree-structured linear and quantile regression framework to the analysis and modeling of equity returns, within the context of asset pricing.\\n\\n\\nDesign/Methodology/Approach\\nThe approach is based on the idea of a binary tree, where every terminal node parameterizes a local regression model for a specific partition of the data. A Bayesian stochastic method is developed including model selection and estimation of the tree structure parameters. The framework is applied on numerous U.S. asset pricing models, using alternative mimicking factor portfolios, frequency of data, market indices, and equity portfolios.\\n\\n\\nFindings\\nThe findings reveal strong evidence that asset returns exhibit asymmetric effects and non- linear patterns to different common factors, but, more importantly, that there are multiple thresholds that create several partitions in the common factor space.\\n\\n\\nOriginality/Value\\nTo the best of the authors' knowledge, this paper is the first to explore and apply a tree-structured and quantile regression framework in an asset pricing context.\\n\",\"PeriodicalId\":21152,\"journal\":{\"name\":\"Review of Accounting and Finance\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Accounting and Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/raf-10-2021-0283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Accounting and Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/raf-10-2021-0283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 3

摘要

本研究的目的是在资产定价的背景下,引入一个树结构的线性和分位数回归框架来分析和建模股票收益。设计/方法/方法该方法基于二叉树的思想,其中每个终端节点为数据的特定分区参数化一个局部回归模型。提出了一种贝叶斯随机方法,包括模型选择和树形结构参数的估计。该框架应用于许多美国资产定价模型,使用替代模拟因子组合、数据频率、市场指数和股票组合。研究结果强有力地表明,资产回报对不同的共同因素表现出不对称效应和非线性模式,但更重要的是,在共同因素空间中存在多个阈值,这些阈值创建了多个分区。原创性/价值据作者所知,本文是第一个在资产定价环境中探索和应用树状结构和分位数回归框架的论文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On tree-structured linear and quantile regression-based asset pricing
Purpose This study aims to introduce a tree-structured linear and quantile regression framework to the analysis and modeling of equity returns, within the context of asset pricing. Design/Methodology/Approach The approach is based on the idea of a binary tree, where every terminal node parameterizes a local regression model for a specific partition of the data. A Bayesian stochastic method is developed including model selection and estimation of the tree structure parameters. The framework is applied on numerous U.S. asset pricing models, using alternative mimicking factor portfolios, frequency of data, market indices, and equity portfolios. Findings The findings reveal strong evidence that asset returns exhibit asymmetric effects and non- linear patterns to different common factors, but, more importantly, that there are multiple thresholds that create several partitions in the common factor space. Originality/Value To the best of the authors' knowledge, this paper is the first to explore and apply a tree-structured and quantile regression framework in an asset pricing context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信