Lindelöf离散p空间的构造

IF 0.5 3区 数学 Q3 MATHEMATICS
J. Mart'inez, L. Soukup
{"title":"Lindelöf离散p空间的构造","authors":"J. Mart'inez, L. Soukup","doi":"10.4064/fm228-7-2022","DOIUrl":null,"url":null,"abstract":"We construct locally Lindelöf scattered P-spaces (LLSP spaces, in short) with prescribed widths and heights under different set-theoretic assumptions. We prove that there is an LLSP space of width ω1 and height ω2 and that it is relatively consistent with ZFC that there is an LLSP space of width ω1 and height ω3. Also, we prove a stepping up theorem that, for every cardinal λ ≥ ω2, permits us to construct from an LLSP space of width ω1 and height λ satisfying certain additional properties an LLSP space of width ω1 and height α for every ordinal α < λ . Then, we obtain as consequences of the above results the following theorems: (1) For every ordinal α < ω3 there is an LLSP space of width ω1 and height α. (2) It is relatively consistent with ZFC that there is an LLSP space of width ω1 and height α for every ordinal α < ω4.","PeriodicalId":55138,"journal":{"name":"Fundamenta Mathematicae","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructions of Lindelöf scattered P-spaces\",\"authors\":\"J. Mart'inez, L. Soukup\",\"doi\":\"10.4064/fm228-7-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct locally Lindelöf scattered P-spaces (LLSP spaces, in short) with prescribed widths and heights under different set-theoretic assumptions. We prove that there is an LLSP space of width ω1 and height ω2 and that it is relatively consistent with ZFC that there is an LLSP space of width ω1 and height ω3. Also, we prove a stepping up theorem that, for every cardinal λ ≥ ω2, permits us to construct from an LLSP space of width ω1 and height λ satisfying certain additional properties an LLSP space of width ω1 and height α for every ordinal α < λ . Then, we obtain as consequences of the above results the following theorems: (1) For every ordinal α < ω3 there is an LLSP space of width ω1 and height α. (2) It is relatively consistent with ZFC that there is an LLSP space of width ω1 and height α for every ordinal α < ω4.\",\"PeriodicalId\":55138,\"journal\":{\"name\":\"Fundamenta Mathematicae\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamenta Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/fm228-7-2022\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm228-7-2022","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们在不同的集合论假设下构造了具有规定宽度和高度的局部Lindelöf离散p空间(简称LLSP空间)。证明了宽度ω1,高度ω2的LLSP空间的存在,并且证明了宽度ω1,高度ω3的LLSP空间的存在与ZFC是相对一致的。此外,我们还证明了一个递进定理,对于每一个基数λ≥ω2,允许我们从一个宽度ω1,高度λ满足某些附加性质的LLSP空间构造一个宽度ω1,高度α的LLSP空间对于每一个序数α < λ。然后,由上述结果得到以下定理:(1)对于每一个序数α < ω3,存在一个宽度ω1,高度α的LLSP空间。(2)对于每一个序数α < ω4,都存在一个宽度ω1,高度α的LLSP空间,这与ZFC相对一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructions of Lindelöf scattered P-spaces
We construct locally Lindelöf scattered P-spaces (LLSP spaces, in short) with prescribed widths and heights under different set-theoretic assumptions. We prove that there is an LLSP space of width ω1 and height ω2 and that it is relatively consistent with ZFC that there is an LLSP space of width ω1 and height ω3. Also, we prove a stepping up theorem that, for every cardinal λ ≥ ω2, permits us to construct from an LLSP space of width ω1 and height λ satisfying certain additional properties an LLSP space of width ω1 and height α for every ordinal α < λ . Then, we obtain as consequences of the above results the following theorems: (1) For every ordinal α < ω3 there is an LLSP space of width ω1 and height α. (2) It is relatively consistent with ZFC that there is an LLSP space of width ω1 and height α for every ordinal α < ω4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fundamenta Mathematicae
Fundamenta Mathematicae 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: FUNDAMENTA MATHEMATICAE concentrates on papers devoted to Set Theory, Mathematical Logic and Foundations of Mathematics, Topology and its Interactions with Algebra, Dynamical Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信