Morrey空间的Calderon复插值

IF 0.3 Q4 MATHEMATICS
D. Hakim
{"title":"Morrey空间的Calderon复插值","authors":"D. Hakim","doi":"10.22342/JIMS.26.1.818.137-164","DOIUrl":null,"url":null,"abstract":"In this note we will discuss some results related to complex interpolation of Morrey spaces. We first recall the Riesz-Thorin interpolation theorem in Section 1. After that, we discuss a partial generalization of this theorem in Morrey spaces proved in \\cite{St}. We also discuss non-interpolation property of Morrey spaces given in \\cite{BRV99, RV}. In Section 3, we recall the definition of Calder\\'on's complex interpolation method and the description of complex interpolation of Lebesgue spaces. In Section 4, we discuss the description of complex interpolation of Morrey spaces given in \\cite{CPP98, HS2, Lemarie, LYY}. Finally, we discuss the description of complex interpolation of subspaces of Morrey spaces in the last section. This note is a summary of the current research about interpolation of Morrey spaces, generalized Morrey spaces, and their subspaces in \\cite{CPP98, HS, HS2, H, H4, Lemarie, LYY}.","PeriodicalId":42206,"journal":{"name":"Journal of the Indonesian Mathematical Society","volume":"26 1","pages":"137-164"},"PeriodicalIF":0.3000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calderon's Complex Interpolation of Morrey Spaces\",\"authors\":\"D. Hakim\",\"doi\":\"10.22342/JIMS.26.1.818.137-164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we will discuss some results related to complex interpolation of Morrey spaces. We first recall the Riesz-Thorin interpolation theorem in Section 1. After that, we discuss a partial generalization of this theorem in Morrey spaces proved in \\\\cite{St}. We also discuss non-interpolation property of Morrey spaces given in \\\\cite{BRV99, RV}. In Section 3, we recall the definition of Calder\\\\'on's complex interpolation method and the description of complex interpolation of Lebesgue spaces. In Section 4, we discuss the description of complex interpolation of Morrey spaces given in \\\\cite{CPP98, HS2, Lemarie, LYY}. Finally, we discuss the description of complex interpolation of subspaces of Morrey spaces in the last section. This note is a summary of the current research about interpolation of Morrey spaces, generalized Morrey spaces, and their subspaces in \\\\cite{CPP98, HS, HS2, H, H4, Lemarie, LYY}.\",\"PeriodicalId\":42206,\"journal\":{\"name\":\"Journal of the Indonesian Mathematical Society\",\"volume\":\"26 1\",\"pages\":\"137-164\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indonesian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22342/JIMS.26.1.818.137-164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indonesian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22342/JIMS.26.1.818.137-164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将讨论与Morrey空间的复插值有关的一些结果。我们首先回顾第一节中的Riesz-Thorin插值定理。然后,我们讨论了这一定理在Morrey空间中的一个部分推广。我们还讨论了在{BRV99,RV}中给出的Morrey空间的非插值性质。在第3节中,我们回顾了Calder’on复插值方法的定义和Lebesgue空间的复插值的描述。在第4节中,我们讨论了在CPP98,HS2,Lemarie,LYY中给出的Morrey空间的复插值的描述。最后,我们讨论了Morrey空间的子空间的复插值的描述。本文综述了Morrey空间、广义Morrey空间及其子空间在CPP98,HS,HS2,H,H4,Lemarie,LYY中的插值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calderon's Complex Interpolation of Morrey Spaces
In this note we will discuss some results related to complex interpolation of Morrey spaces. We first recall the Riesz-Thorin interpolation theorem in Section 1. After that, we discuss a partial generalization of this theorem in Morrey spaces proved in \cite{St}. We also discuss non-interpolation property of Morrey spaces given in \cite{BRV99, RV}. In Section 3, we recall the definition of Calder\'on's complex interpolation method and the description of complex interpolation of Lebesgue spaces. In Section 4, we discuss the description of complex interpolation of Morrey spaces given in \cite{CPP98, HS2, Lemarie, LYY}. Finally, we discuss the description of complex interpolation of subspaces of Morrey spaces in the last section. This note is a summary of the current research about interpolation of Morrey spaces, generalized Morrey spaces, and their subspaces in \cite{CPP98, HS, HS2, H, H4, Lemarie, LYY}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信