Prayoga Wira Adie, R. Adiputra, A. Prabowo, Erwandi Erwandi, T. Muttaqie, N. Muhayat, N. Huda
{"title":"OTEC冷水管在弯曲载荷下的设计评估:有限元法的基准和参数研究","authors":"Prayoga Wira Adie, R. Adiputra, A. Prabowo, Erwandi Erwandi, T. Muttaqie, N. Muhayat, N. Huda","doi":"10.1515/jmbm-2022-0298","DOIUrl":null,"url":null,"abstract":"Abstract Ocean thermal energy conversion (OTEC) is a floating platform that generates electricity from seawater heat. The cold water pipe (CWP) used in OTEC has a length of 1,000 m and a diameter of 10 m, making it susceptible to bending loads from ocean currents. To find suitable geometry and material for the CWP, the finite element method was used to model the real-world geometry. In the D/t variation, lower ratios (increased thickness) result in higher critical moments, maximum stress, strain, and displacement. D/t 50 was chosen for the CWP. In the L/D variation, the critical moment’s impact on L/D ratio was minimal, while reducing L/D (shorter pipe) increased strain, and larger L/D geometries had higher displacements. L/D 10 was selected as it balanced critical moments and reduced the number of stiffeners needed. For diameter size variation, larger diameters increased critical moment and strain, but smaller diameters (larger L/D ratios) also showed high strain due to necking at two points. A diameter of 12 m was chosen for its exceptionally high critical moment. Steel was selected as the suitable material due to its higher critical moment and maximum stress, despite its higher weight and lower maximum strain than composites. Capital shape imperfections had a minimal effect on the CWP’s structure as they were localized.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of the OTEC cold water pipe design under bending loading: A benchmarking and parametric study using finite element approach\",\"authors\":\"Prayoga Wira Adie, R. Adiputra, A. Prabowo, Erwandi Erwandi, T. Muttaqie, N. Muhayat, N. Huda\",\"doi\":\"10.1515/jmbm-2022-0298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Ocean thermal energy conversion (OTEC) is a floating platform that generates electricity from seawater heat. The cold water pipe (CWP) used in OTEC has a length of 1,000 m and a diameter of 10 m, making it susceptible to bending loads from ocean currents. To find suitable geometry and material for the CWP, the finite element method was used to model the real-world geometry. In the D/t variation, lower ratios (increased thickness) result in higher critical moments, maximum stress, strain, and displacement. D/t 50 was chosen for the CWP. In the L/D variation, the critical moment’s impact on L/D ratio was minimal, while reducing L/D (shorter pipe) increased strain, and larger L/D geometries had higher displacements. L/D 10 was selected as it balanced critical moments and reduced the number of stiffeners needed. For diameter size variation, larger diameters increased critical moment and strain, but smaller diameters (larger L/D ratios) also showed high strain due to necking at two points. A diameter of 12 m was chosen for its exceptionally high critical moment. Steel was selected as the suitable material due to its higher critical moment and maximum stress, despite its higher weight and lower maximum strain than composites. Capital shape imperfections had a minimal effect on the CWP’s structure as they were localized.\",\"PeriodicalId\":17354,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmbm-2022-0298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Assessment of the OTEC cold water pipe design under bending loading: A benchmarking and parametric study using finite element approach
Abstract Ocean thermal energy conversion (OTEC) is a floating platform that generates electricity from seawater heat. The cold water pipe (CWP) used in OTEC has a length of 1,000 m and a diameter of 10 m, making it susceptible to bending loads from ocean currents. To find suitable geometry and material for the CWP, the finite element method was used to model the real-world geometry. In the D/t variation, lower ratios (increased thickness) result in higher critical moments, maximum stress, strain, and displacement. D/t 50 was chosen for the CWP. In the L/D variation, the critical moment’s impact on L/D ratio was minimal, while reducing L/D (shorter pipe) increased strain, and larger L/D geometries had higher displacements. L/D 10 was selected as it balanced critical moments and reduced the number of stiffeners needed. For diameter size variation, larger diameters increased critical moment and strain, but smaller diameters (larger L/D ratios) also showed high strain due to necking at two points. A diameter of 12 m was chosen for its exceptionally high critical moment. Steel was selected as the suitable material due to its higher critical moment and maximum stress, despite its higher weight and lower maximum strain than composites. Capital shape imperfections had a minimal effect on the CWP’s structure as they were localized.
期刊介绍:
The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.