求解幂次ml -收益函数Black Scholes方程的PDTM方法

IF 1.1 Q2 MATHEMATICS, APPLIED
S. J. Ghevariya
{"title":"求解幂次ml -收益函数Black Scholes方程的PDTM方法","authors":"S. J. Ghevariya","doi":"10.22034/CMDE.2021.37944.1675","DOIUrl":null,"url":null,"abstract":"In this paper, the Projected Differential Transform Method (PDTM) has been used to solve the Black Scholes differential equation for powered Modified Log Payoff (ML-Payoff) functions, $max {S^klnbig(frac{S}{K}big),0}$ and $max{S^klnbig(frac{K}{S}big),0}, (kin mathbb{R^{+}}cup {0})$. It is the generalization of Black Scholes model for ML-Payoff functions. It can be seen that values from PDTM is quite accurate to the closed form solutions.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PDTM Approach to Solve Black Scholes Equation for Powered ML-Payoff Function\",\"authors\":\"S. J. Ghevariya\",\"doi\":\"10.22034/CMDE.2021.37944.1675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the Projected Differential Transform Method (PDTM) has been used to solve the Black Scholes differential equation for powered Modified Log Payoff (ML-Payoff) functions, $max {S^klnbig(frac{S}{K}big),0}$ and $max{S^klnbig(frac{K}{S}big),0}, (kin mathbb{R^{+}}cup {0})$. It is the generalization of Black Scholes model for ML-Payoff functions. It can be seen that values from PDTM is quite accurate to the closed form solutions.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2021.37944.1675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.37944.1675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,投影微分变换方法(PDTM)被用于求解幂次修正对数收益函数的Black-Scholes微分方程,$max{S^klnbig(frac{S}{K}big),0}$和$max{S^klnbig(frac{K}{S}big),0},(kin-mathbb{R^{+}}cup{0})$。它是Black-Scholes模型对ML Payoff函数的推广。可以看出,PDTM的值对于闭合形式的解是相当精确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PDTM Approach to Solve Black Scholes Equation for Powered ML-Payoff Function
In this paper, the Projected Differential Transform Method (PDTM) has been used to solve the Black Scholes differential equation for powered Modified Log Payoff (ML-Payoff) functions, $max {S^klnbig(frac{S}{K}big),0}$ and $max{S^klnbig(frac{K}{S}big),0}, (kin mathbb{R^{+}}cup {0})$. It is the generalization of Black Scholes model for ML-Payoff functions. It can be seen that values from PDTM is quite accurate to the closed form solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信