利用激光雷达衍生的DTM变量模拟地形变异对均匀年龄桉树物种的影响

IF 0.3 Q4 REMOTE SENSING
K. Peerbhay, Roxanne. Munsamy, M. Gebreslasie, R. Ismail
{"title":"利用激光雷达衍生的DTM变量模拟地形变异对均匀年龄桉树物种的影响","authors":"K. Peerbhay, Roxanne. Munsamy, M. Gebreslasie, R. Ismail","doi":"10.4314/sajg.v9i2.9","DOIUrl":null,"url":null,"abstract":"Accurate multi-source forest inventory attributes are necessary for estimating productivity and timber stock in commercial forest plantations. This study aims to uncover the effects of terrain variation on the growth of even aged Eucalyptus forest species using Light Detection and Ranging (LiDAR) topographical variables. Using 32 generated variables at 5 different spatial resolutions (1m, 3m, 5m, 7m, 9m), the random forest (RF) regression successfully revealed variations for structural attributes such as volume (Vol/ha), dominant tree height (HtD), mean tree height (Htm), and diameter breast heights (DBH). Results indicate that smaller spatial resolutions performed better for younger stands while larger resolutions produced the best results for mature stands. Using the multi-resolution approach results improved with variable selection. Incoming solar radiation and slope variables were among the most important terrain variables for modelling forest structural variability. The findings from this study demonstrates the value of stratifying forest productivity across the commercial forest landscapes of South Africa.","PeriodicalId":43854,"journal":{"name":"South African Journal of Geomatics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling the effect of terrain variability in even-aged Eucalyptus species using LiDAR-derived DTM variables\",\"authors\":\"K. Peerbhay, Roxanne. Munsamy, M. Gebreslasie, R. Ismail\",\"doi\":\"10.4314/sajg.v9i2.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate multi-source forest inventory attributes are necessary for estimating productivity and timber stock in commercial forest plantations. This study aims to uncover the effects of terrain variation on the growth of even aged Eucalyptus forest species using Light Detection and Ranging (LiDAR) topographical variables. Using 32 generated variables at 5 different spatial resolutions (1m, 3m, 5m, 7m, 9m), the random forest (RF) regression successfully revealed variations for structural attributes such as volume (Vol/ha), dominant tree height (HtD), mean tree height (Htm), and diameter breast heights (DBH). Results indicate that smaller spatial resolutions performed better for younger stands while larger resolutions produced the best results for mature stands. Using the multi-resolution approach results improved with variable selection. Incoming solar radiation and slope variables were among the most important terrain variables for modelling forest structural variability. The findings from this study demonstrates the value of stratifying forest productivity across the commercial forest landscapes of South Africa.\",\"PeriodicalId\":43854,\"journal\":{\"name\":\"South African Journal of Geomatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Journal of Geomatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/sajg.v9i2.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/sajg.v9i2.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

准确的多源森林库存属性对于估计商业人工林的生产力和木材存量是必要的。本研究旨在利用光探测和测距(LiDAR)地形变量揭示地形变化对同龄桉树林物种生长的影响。随机森林(RF)回归使用了5种不同空间分辨率(1米、3米、5米、7米、9米)的32个生成变量,成功地揭示了结构属性的变化,如体积(Vol/ha)、优势树高(HtD)、平均树高(Htm)和径胸高(DBH)。结果表明,较小的空间分辨率对年轻林分表现更好,而较大的分辨率对成熟林分表现最好。使用多分辨率方法对变量选择的结果进行了改进。入射太阳辐射和坡度变量是模拟森林结构变异性的最重要地形变量之一。这项研究的结果证明了在南非商业森林景观中对森林生产力进行分层的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling the effect of terrain variability in even-aged Eucalyptus species using LiDAR-derived DTM variables
Accurate multi-source forest inventory attributes are necessary for estimating productivity and timber stock in commercial forest plantations. This study aims to uncover the effects of terrain variation on the growth of even aged Eucalyptus forest species using Light Detection and Ranging (LiDAR) topographical variables. Using 32 generated variables at 5 different spatial resolutions (1m, 3m, 5m, 7m, 9m), the random forest (RF) regression successfully revealed variations for structural attributes such as volume (Vol/ha), dominant tree height (HtD), mean tree height (Htm), and diameter breast heights (DBH). Results indicate that smaller spatial resolutions performed better for younger stands while larger resolutions produced the best results for mature stands. Using the multi-resolution approach results improved with variable selection. Incoming solar radiation and slope variables were among the most important terrain variables for modelling forest structural variability. The findings from this study demonstrates the value of stratifying forest productivity across the commercial forest landscapes of South Africa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
82
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信