Oliver Burkhard, R. Ahas, Erki Saluveer, R. Weibel
{"title":"在没有先验假设的情况下从稀疏CDR数据中提取规则移动性模式","authors":"Oliver Burkhard, R. Ahas, Erki Saluveer, R. Weibel","doi":"10.1080/17489725.2017.1333638","DOIUrl":null,"url":null,"abstract":"Abstract In this work we present two methods that can extract habitual movement patterns and reconstruct the underlying movement of users from their call detail records (CDR) in a way that works for users with only moderate numbers of CDRs and that does not make any prior assumptions on the behaviour of the users. The methods allow for a more comprehensive user base in large-scale studies due to the fact that users that might otherwise have to be discarded can also be analysed. The first one is computationally not overly intense and is based on association mining. The second one, which we named DAMOCLES, is based on extracting idiosyncratic daily patterns from clustered daily activities. The methods are evaluated on real data of 140 users over an average of 200 days against benchmarks using assumptions commonly found in the literature such as a work week from Monday to Friday on GPS ground truth. Both methods clearly outperform the benchmarks and for many users retrieve similar regularities. Additionally a simulation study is performed that allows to evaluate the methods in a more controlled environment.","PeriodicalId":44932,"journal":{"name":"Journal of Location Based Services","volume":"11 1","pages":"78 - 97"},"PeriodicalIF":1.2000,"publicationDate":"2017-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17489725.2017.1333638","citationCount":"16","resultStr":"{\"title\":\"Extracting regular mobility patterns from sparse CDR data without a priori assumptions\",\"authors\":\"Oliver Burkhard, R. Ahas, Erki Saluveer, R. Weibel\",\"doi\":\"10.1080/17489725.2017.1333638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work we present two methods that can extract habitual movement patterns and reconstruct the underlying movement of users from their call detail records (CDR) in a way that works for users with only moderate numbers of CDRs and that does not make any prior assumptions on the behaviour of the users. The methods allow for a more comprehensive user base in large-scale studies due to the fact that users that might otherwise have to be discarded can also be analysed. The first one is computationally not overly intense and is based on association mining. The second one, which we named DAMOCLES, is based on extracting idiosyncratic daily patterns from clustered daily activities. The methods are evaluated on real data of 140 users over an average of 200 days against benchmarks using assumptions commonly found in the literature such as a work week from Monday to Friday on GPS ground truth. Both methods clearly outperform the benchmarks and for many users retrieve similar regularities. Additionally a simulation study is performed that allows to evaluate the methods in a more controlled environment.\",\"PeriodicalId\":44932,\"journal\":{\"name\":\"Journal of Location Based Services\",\"volume\":\"11 1\",\"pages\":\"78 - 97\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17489725.2017.1333638\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Location Based Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17489725.2017.1333638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Location Based Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17489725.2017.1333638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Extracting regular mobility patterns from sparse CDR data without a priori assumptions
Abstract In this work we present two methods that can extract habitual movement patterns and reconstruct the underlying movement of users from their call detail records (CDR) in a way that works for users with only moderate numbers of CDRs and that does not make any prior assumptions on the behaviour of the users. The methods allow for a more comprehensive user base in large-scale studies due to the fact that users that might otherwise have to be discarded can also be analysed. The first one is computationally not overly intense and is based on association mining. The second one, which we named DAMOCLES, is based on extracting idiosyncratic daily patterns from clustered daily activities. The methods are evaluated on real data of 140 users over an average of 200 days against benchmarks using assumptions commonly found in the literature such as a work week from Monday to Friday on GPS ground truth. Both methods clearly outperform the benchmarks and for many users retrieve similar regularities. Additionally a simulation study is performed that allows to evaluate the methods in a more controlled environment.
期刊介绍:
The aim of this interdisciplinary and international journal is to provide a forum for the exchange of original ideas, techniques, designs and experiences in the rapidly growing field of location based services on networked mobile devices. It is intended to interest those who design, implement and deliver location based services in a wide range of contexts. Published research will span the field from location based computing and next-generation interfaces through telecom location architectures to business models and the social implications of this technology. The diversity of content echoes the extended nature of the chain of players required to make location based services a reality.