Isaac Cinzori, Charles R. Johnson, Hannah Lang, Carlos M. Saiago
{"title":"对称多重性理论对域上几何情形的进一步推广","authors":"Isaac Cinzori, Charles R. Johnson, Hannah Lang, Carlos M. Saiago","doi":"10.1515/spma-2020-0119","DOIUrl":null,"url":null,"abstract":"Abstract Using the recent geometric Parter-Wiener, etc. theorem and related results, it is shown that much of the multiplicity theory developed for real symmetric matrices associated with paths and generalized stars remains valid for combinatorially symmetric matrices over a field. A characterization of generalized stars in the case of combinatorially symmetric matrices is given.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"9 1","pages":"31 - 35"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/spma-2020-0119","citationCount":"0","resultStr":"{\"title\":\"Further generalization of symmetric multiplicity theory to the geometric case over a field\",\"authors\":\"Isaac Cinzori, Charles R. Johnson, Hannah Lang, Carlos M. Saiago\",\"doi\":\"10.1515/spma-2020-0119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Using the recent geometric Parter-Wiener, etc. theorem and related results, it is shown that much of the multiplicity theory developed for real symmetric matrices associated with paths and generalized stars remains valid for combinatorially symmetric matrices over a field. A characterization of generalized stars in the case of combinatorially symmetric matrices is given.\",\"PeriodicalId\":43276,\"journal\":{\"name\":\"Special Matrices\",\"volume\":\"9 1\",\"pages\":\"31 - 35\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/spma-2020-0119\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Matrices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/spma-2020-0119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2020-0119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Further generalization of symmetric multiplicity theory to the geometric case over a field
Abstract Using the recent geometric Parter-Wiener, etc. theorem and related results, it is shown that much of the multiplicity theory developed for real symmetric matrices associated with paths and generalized stars remains valid for combinatorially symmetric matrices over a field. A characterization of generalized stars in the case of combinatorially symmetric matrices is given.
期刊介绍:
Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.