{"title":"城市环境中交通拥堵传播的检测——以上海市浮动出租车数据为例","authors":"A. Keler, J. Krisp, L. Ding","doi":"10.1080/17489725.2017.1420256","DOIUrl":null,"url":null,"abstract":"Abstract Traffic congestion in urban environments has severe influences on the daily life of people. Due to typical recurrent mobility patterns of commuters and transport fleets, we can detect traffic congestion events on selected hours of the day, so called rush hours. Besides the mentioned recurrent traffic congestion, there are non-recurrent events that may be caused by accidents or newly established building sites. We want to inspect this appearance using a massive Floating Taxi Data (FTD) set of Shanghai from 2007. We introduce a simple method for detecting and extracting congestion events on selected rush hours and for distinguishing between their recurrence and non-recurrence. By preselecting of similar velocity and driving direction values of the nearby situated FTD points, we provide the first part for the Shared Nearest Neighbour (SNN) clustering method, which follows with a density-based clustering. After the definition of our traffic congestion clusters, we try to connect ongoing events by querying individual taxi identifications. The detected events are then represented by polylines that connect density core points of the clusters. By comparing the shapes of congestion propagation polylines of different days, we try to classify recurrent congestion events that follow similar patterns. In the end, we reason on the reasonability of our method and mention further steps of its extension.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17489725.2017.1420256","citationCount":"7","resultStr":"{\"title\":\"Detecting traffic congestion propagation in urban environments – a case study with Floating Taxi Data (FTD) in Shanghai\",\"authors\":\"A. Keler, J. Krisp, L. Ding\",\"doi\":\"10.1080/17489725.2017.1420256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Traffic congestion in urban environments has severe influences on the daily life of people. Due to typical recurrent mobility patterns of commuters and transport fleets, we can detect traffic congestion events on selected hours of the day, so called rush hours. Besides the mentioned recurrent traffic congestion, there are non-recurrent events that may be caused by accidents or newly established building sites. We want to inspect this appearance using a massive Floating Taxi Data (FTD) set of Shanghai from 2007. We introduce a simple method for detecting and extracting congestion events on selected rush hours and for distinguishing between their recurrence and non-recurrence. By preselecting of similar velocity and driving direction values of the nearby situated FTD points, we provide the first part for the Shared Nearest Neighbour (SNN) clustering method, which follows with a density-based clustering. After the definition of our traffic congestion clusters, we try to connect ongoing events by querying individual taxi identifications. The detected events are then represented by polylines that connect density core points of the clusters. By comparing the shapes of congestion propagation polylines of different days, we try to classify recurrent congestion events that follow similar patterns. In the end, we reason on the reasonability of our method and mention further steps of its extension.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2017-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17489725.2017.1420256\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17489725.2017.1420256\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17489725.2017.1420256","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Detecting traffic congestion propagation in urban environments – a case study with Floating Taxi Data (FTD) in Shanghai
Abstract Traffic congestion in urban environments has severe influences on the daily life of people. Due to typical recurrent mobility patterns of commuters and transport fleets, we can detect traffic congestion events on selected hours of the day, so called rush hours. Besides the mentioned recurrent traffic congestion, there are non-recurrent events that may be caused by accidents or newly established building sites. We want to inspect this appearance using a massive Floating Taxi Data (FTD) set of Shanghai from 2007. We introduce a simple method for detecting and extracting congestion events on selected rush hours and for distinguishing between their recurrence and non-recurrence. By preselecting of similar velocity and driving direction values of the nearby situated FTD points, we provide the first part for the Shared Nearest Neighbour (SNN) clustering method, which follows with a density-based clustering. After the definition of our traffic congestion clusters, we try to connect ongoing events by querying individual taxi identifications. The detected events are then represented by polylines that connect density core points of the clusters. By comparing the shapes of congestion propagation polylines of different days, we try to classify recurrent congestion events that follow similar patterns. In the end, we reason on the reasonability of our method and mention further steps of its extension.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.