Y. Teng, Mengke Su, Lulu Liu, Sheng Chen, Xunyan Liu
{"title":"面向未来农业的新型异源多倍体作物的创造与重新改良","authors":"Y. Teng, Mengke Su, Lulu Liu, Sheng Chen, Xunyan Liu","doi":"10.1080/07352689.2023.2178743","DOIUrl":null,"url":null,"abstract":"Abstract The development of climate change resilient crops is conducive to meeting the increasing threat of supporting the growing world population. Polyploidy occupies an important position in angiosperm evolution, as a key factor that shapes plant biodiversity, growth vigor, environmental adaptation, and emerging chemical compounds. In this review, we outlined the development and application of creating new allopolyploids using sexual and asexual approaches and their potential benefits and problems. We described how polyploidization caused strict genome modification at cytogenetic, genetic, and epigenetic levels with emphasis on the latest update on genome assembly of newly synthesized allopolyploids. Despite the success in creating new allopolyploids in many genera, it occasionally gave rise to undesirable traits to impact the utilization of newly synthetic allopolyploids. Recent developments in the de novo domestication of wild species through genome editing provide a route to create new crops to secure the global food supply. Following the strategy, de novo improvement of newly synthetic allopolyploids using genome editing could be galvanized to rapidly improve newly synthesized allopolyploids to meet agriculture demands and enable plant breeders to keep pace with global changes.","PeriodicalId":10854,"journal":{"name":"Critical Reviews in Plant Sciences","volume":"42 1","pages":"53 - 64"},"PeriodicalIF":6.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Creating and De Novo Improvement of New Allopolyploid Crops for Future Agriculture\",\"authors\":\"Y. Teng, Mengke Su, Lulu Liu, Sheng Chen, Xunyan Liu\",\"doi\":\"10.1080/07352689.2023.2178743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The development of climate change resilient crops is conducive to meeting the increasing threat of supporting the growing world population. Polyploidy occupies an important position in angiosperm evolution, as a key factor that shapes plant biodiversity, growth vigor, environmental adaptation, and emerging chemical compounds. In this review, we outlined the development and application of creating new allopolyploids using sexual and asexual approaches and their potential benefits and problems. We described how polyploidization caused strict genome modification at cytogenetic, genetic, and epigenetic levels with emphasis on the latest update on genome assembly of newly synthesized allopolyploids. Despite the success in creating new allopolyploids in many genera, it occasionally gave rise to undesirable traits to impact the utilization of newly synthetic allopolyploids. Recent developments in the de novo domestication of wild species through genome editing provide a route to create new crops to secure the global food supply. Following the strategy, de novo improvement of newly synthetic allopolyploids using genome editing could be galvanized to rapidly improve newly synthesized allopolyploids to meet agriculture demands and enable plant breeders to keep pace with global changes.\",\"PeriodicalId\":10854,\"journal\":{\"name\":\"Critical Reviews in Plant Sciences\",\"volume\":\"42 1\",\"pages\":\"53 - 64\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Plant Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07352689.2023.2178743\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07352689.2023.2178743","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Creating and De Novo Improvement of New Allopolyploid Crops for Future Agriculture
Abstract The development of climate change resilient crops is conducive to meeting the increasing threat of supporting the growing world population. Polyploidy occupies an important position in angiosperm evolution, as a key factor that shapes plant biodiversity, growth vigor, environmental adaptation, and emerging chemical compounds. In this review, we outlined the development and application of creating new allopolyploids using sexual and asexual approaches and their potential benefits and problems. We described how polyploidization caused strict genome modification at cytogenetic, genetic, and epigenetic levels with emphasis on the latest update on genome assembly of newly synthesized allopolyploids. Despite the success in creating new allopolyploids in many genera, it occasionally gave rise to undesirable traits to impact the utilization of newly synthetic allopolyploids. Recent developments in the de novo domestication of wild species through genome editing provide a route to create new crops to secure the global food supply. Following the strategy, de novo improvement of newly synthetic allopolyploids using genome editing could be galvanized to rapidly improve newly synthesized allopolyploids to meet agriculture demands and enable plant breeders to keep pace with global changes.
期刊介绍:
Critical Reviews in Plant Sciences focuses on presenting in-depth and up-to-date reviews of timely and/or cutting-edge subjects in the broad discipline of plant science, ranging from molecular biology/biochemistry through the areas of cell biology, plant pathology and physiology, genetics, classical botany, and ecology, to practical agricultural applications. Articles in the journal provide an up-to-date literature base for researchers and students, pointing the way towards future research needs. The journal is also a significant source of credible, objective information to aid decision makers at all levels.