{"title":"Rademacher级数的递归性与短暂性","authors":"Satyaki Bhattacharya, S. Volkov","doi":"10.30757/alea.v20-03","DOIUrl":null,"url":null,"abstract":"We introduce the notion of {\\bf a}-walk $S(n)=a_1 X_1+\\dots+a_n X_n$, based on a sequence of positive numbers ${\\bf a}=(a_1,a_2,\\dots)$ and a Rademacher sequence $X_1,X_2,\\dots$. We study recurrence/transience (properly defined) of such walks for various sequences of ${\\bf a}$. In particular, we establish the classification in the cases where $a_k=\\lfloor k^\\beta\\rfloor$, $\\beta>0$, as well as in the case $a_k=\\lceil \\log_\\gamma k \\rceil$ or $a_k=\\log_\\gamma k$ for $\\gamma>1$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recurrence and transience of Rademacher series\",\"authors\":\"Satyaki Bhattacharya, S. Volkov\",\"doi\":\"10.30757/alea.v20-03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the notion of {\\\\bf a}-walk $S(n)=a_1 X_1+\\\\dots+a_n X_n$, based on a sequence of positive numbers ${\\\\bf a}=(a_1,a_2,\\\\dots)$ and a Rademacher sequence $X_1,X_2,\\\\dots$. We study recurrence/transience (properly defined) of such walks for various sequences of ${\\\\bf a}$. In particular, we establish the classification in the cases where $a_k=\\\\lfloor k^\\\\beta\\\\rfloor$, $\\\\beta>0$, as well as in the case $a_k=\\\\lceil \\\\log_\\\\gamma k \\\\rceil$ or $a_k=\\\\log_\\\\gamma k$ for $\\\\gamma>1$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.30757/alea.v20-03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v20-03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce the notion of {\bf a}-walk $S(n)=a_1 X_1+\dots+a_n X_n$, based on a sequence of positive numbers ${\bf a}=(a_1,a_2,\dots)$ and a Rademacher sequence $X_1,X_2,\dots$. We study recurrence/transience (properly defined) of such walks for various sequences of ${\bf a}$. In particular, we establish the classification in the cases where $a_k=\lfloor k^\beta\rfloor$, $\beta>0$, as well as in the case $a_k=\lceil \log_\gamma k \rceil$ or $a_k=\log_\gamma k$ for $\gamma>1$.