J. Hentati‐Sundberg, Agnes B. Olin, Sheetal Reddy, Per‐Arvid Berglund, Erik Svensson, M. Reddy, Siddharta Kasarareni, A. Carlsen, Matilda Hanes, Shreyash Kad, O. Olsson
{"title":"海鸟监测:CCTV和人工智能相结合进行监测和研究","authors":"J. Hentati‐Sundberg, Agnes B. Olin, Sheetal Reddy, Per‐Arvid Berglund, Erik Svensson, M. Reddy, Siddharta Kasarareni, A. Carlsen, Matilda Hanes, Shreyash Kad, O. Olsson","doi":"10.1002/rse2.329","DOIUrl":null,"url":null,"abstract":"Ecological research and monitoring need to be able to rapidly convey information that can form the basis of scientifically sound management. Automated sensor systems, especially if combined with artificial intelligence, can contribute to such rapid high‐resolution data retrieval. Here, we explore the prospects of automated methods to generate insights for seabirds, which are often monitored for their high conservation value and for being sentinels for marine ecosystem changes. We have developed a system of video surveillance combined with automated image processing, which we apply to common murres Uria aalge. The system uses a deep learning algorithm for object detection (YOLOv5) that has been trained on annotated images of adult birds, chicks and eggs, and outputs time, location, size and confidence level of all detections, frame‐by‐frame, in the supplied video material. A total of 144 million bird detections were generated from a breeding cliff over three complete breeding seasons (2019–2021). We demonstrate how object detection can be used to accurately monitor breeding phenology and chick growth. Our automated monitoring approach can also identify and quantify rare events that are easily missed in traditional monitoring, such as disturbances from predators. Further, combining automated video analysis with continuous measurements from a temperature logger allows us to study impacts of heat waves on nest attendance in high detail. Our automated system thus produces comparable, and in several cases significantly more detailed, data than those generated from observational field studies. By running in real time on the camera streams, it has the potential to supply researchers and managers with high‐resolution up‐to‐date information on seabird population status. We describe how the system can be modified to fit various types of ecological research and monitoring goals and thereby provide up‐to‐date support for conservation and ecosystem management.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Seabird surveillance: combining CCTV and artificial intelligence for monitoring and research\",\"authors\":\"J. Hentati‐Sundberg, Agnes B. Olin, Sheetal Reddy, Per‐Arvid Berglund, Erik Svensson, M. Reddy, Siddharta Kasarareni, A. Carlsen, Matilda Hanes, Shreyash Kad, O. Olsson\",\"doi\":\"10.1002/rse2.329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ecological research and monitoring need to be able to rapidly convey information that can form the basis of scientifically sound management. Automated sensor systems, especially if combined with artificial intelligence, can contribute to such rapid high‐resolution data retrieval. Here, we explore the prospects of automated methods to generate insights for seabirds, which are often monitored for their high conservation value and for being sentinels for marine ecosystem changes. We have developed a system of video surveillance combined with automated image processing, which we apply to common murres Uria aalge. The system uses a deep learning algorithm for object detection (YOLOv5) that has been trained on annotated images of adult birds, chicks and eggs, and outputs time, location, size and confidence level of all detections, frame‐by‐frame, in the supplied video material. A total of 144 million bird detections were generated from a breeding cliff over three complete breeding seasons (2019–2021). We demonstrate how object detection can be used to accurately monitor breeding phenology and chick growth. Our automated monitoring approach can also identify and quantify rare events that are easily missed in traditional monitoring, such as disturbances from predators. Further, combining automated video analysis with continuous measurements from a temperature logger allows us to study impacts of heat waves on nest attendance in high detail. Our automated system thus produces comparable, and in several cases significantly more detailed, data than those generated from observational field studies. By running in real time on the camera streams, it has the potential to supply researchers and managers with high‐resolution up‐to‐date information on seabird population status. We describe how the system can be modified to fit various types of ecological research and monitoring goals and thereby provide up‐to‐date support for conservation and ecosystem management.\",\"PeriodicalId\":21132,\"journal\":{\"name\":\"Remote Sensing in Ecology and Conservation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing in Ecology and Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/rse2.329\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.329","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Seabird surveillance: combining CCTV and artificial intelligence for monitoring and research
Ecological research and monitoring need to be able to rapidly convey information that can form the basis of scientifically sound management. Automated sensor systems, especially if combined with artificial intelligence, can contribute to such rapid high‐resolution data retrieval. Here, we explore the prospects of automated methods to generate insights for seabirds, which are often monitored for their high conservation value and for being sentinels for marine ecosystem changes. We have developed a system of video surveillance combined with automated image processing, which we apply to common murres Uria aalge. The system uses a deep learning algorithm for object detection (YOLOv5) that has been trained on annotated images of adult birds, chicks and eggs, and outputs time, location, size and confidence level of all detections, frame‐by‐frame, in the supplied video material. A total of 144 million bird detections were generated from a breeding cliff over three complete breeding seasons (2019–2021). We demonstrate how object detection can be used to accurately monitor breeding phenology and chick growth. Our automated monitoring approach can also identify and quantify rare events that are easily missed in traditional monitoring, such as disturbances from predators. Further, combining automated video analysis with continuous measurements from a temperature logger allows us to study impacts of heat waves on nest attendance in high detail. Our automated system thus produces comparable, and in several cases significantly more detailed, data than those generated from observational field studies. By running in real time on the camera streams, it has the potential to supply researchers and managers with high‐resolution up‐to‐date information on seabird population status. We describe how the system can be modified to fit various types of ecological research and monitoring goals and thereby provide up‐to‐date support for conservation and ecosystem management.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.