{"title":"非零边界条件下半轴上非严格双曲型系统的逆散射问题","authors":"M. Ismailov, T. Kal’menov","doi":"10.1515/jiip-2022-0027","DOIUrl":null,"url":null,"abstract":"Abstract The paper considers the scattering problem for the first-order system of hyperbolic equations on the half-axis with a nonhomogeneous boundary condition. This problem models the phnomennon of wave propagation in a nonstationary medium where an incoming wave unaffected by a potential field. The scattering operator on the half-axis with a nonzero boundary condition is defined and the uniqueness of the inverse scattering problem (the problem of finding the potential with respect to scattering operator) is studied.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse scattering problem for nonstrict hyperbolic system on the half-axis with a nonzero boundary condition\",\"authors\":\"M. Ismailov, T. Kal’menov\",\"doi\":\"10.1515/jiip-2022-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper considers the scattering problem for the first-order system of hyperbolic equations on the half-axis with a nonhomogeneous boundary condition. This problem models the phnomennon of wave propagation in a nonstationary medium where an incoming wave unaffected by a potential field. The scattering operator on the half-axis with a nonzero boundary condition is defined and the uniqueness of the inverse scattering problem (the problem of finding the potential with respect to scattering operator) is studied.\",\"PeriodicalId\":50171,\"journal\":{\"name\":\"Journal of Inverse and Ill-Posed Problems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inverse and Ill-Posed Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jiip-2022-0027\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2022-0027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Inverse scattering problem for nonstrict hyperbolic system on the half-axis with a nonzero boundary condition
Abstract The paper considers the scattering problem for the first-order system of hyperbolic equations on the half-axis with a nonhomogeneous boundary condition. This problem models the phnomennon of wave propagation in a nonstationary medium where an incoming wave unaffected by a potential field. The scattering operator on the half-axis with a nonzero boundary condition is defined and the uniqueness of the inverse scattering problem (the problem of finding the potential with respect to scattering operator) is studied.
期刊介绍:
This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published.
Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest.
The following topics are covered:
Inverse problems
existence and uniqueness theorems
stability estimates
optimization and identification problems
numerical methods
Ill-posed problems
regularization theory
operator equations
integral geometry
Applications
inverse problems in geophysics, electrodynamics and acoustics
inverse problems in ecology
inverse and ill-posed problems in medicine
mathematical problems of tomography