倾斜楼梯形状的双射隐藏对称性

Q3 Mathematics
Zachary Hamaker, A. Morales, I. Pak, Luis G. Serrano, N. Williams
{"title":"倾斜楼梯形状的双射隐藏对称性","authors":"Zachary Hamaker, A. Morales, I. Pak, Luis G. Serrano, N. Williams","doi":"10.5802/alco.285","DOIUrl":null,"url":null,"abstract":"We present a bijection between the set of standard Young tableaux of staircase minus rectangle shape, and the set of marked shifted standard Young tableaux of a certain shifted shape. Numerically, this result is due to DeWitt (2012). Combined with other known bijections this gives a bijective proof of the product formula for the number of standard Young tableaux of staircase minus rectangle shape. This resolves an open problem by Morales, Pak and Panova (2019), and allows for efficient random sampling. Other applications include a bijection for semistandard Young tableaux, and a bijective proof of Stembridge's symmetry of LR-coefficients of the staircase shape. We also extend these results to set-valued standard Young tableaux in the combinatorics of K-theory, leading to new proofs of results by Lewis and Marberg (2019) and Abney-McPeek, An and Ng (2020).","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bijecting hidden symmetries for skew staircase shapes\",\"authors\":\"Zachary Hamaker, A. Morales, I. Pak, Luis G. Serrano, N. Williams\",\"doi\":\"10.5802/alco.285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a bijection between the set of standard Young tableaux of staircase minus rectangle shape, and the set of marked shifted standard Young tableaux of a certain shifted shape. Numerically, this result is due to DeWitt (2012). Combined with other known bijections this gives a bijective proof of the product formula for the number of standard Young tableaux of staircase minus rectangle shape. This resolves an open problem by Morales, Pak and Panova (2019), and allows for efficient random sampling. Other applications include a bijection for semistandard Young tableaux, and a bijective proof of Stembridge's symmetry of LR-coefficients of the staircase shape. We also extend these results to set-valued standard Young tableaux in the combinatorics of K-theory, leading to new proofs of results by Lewis and Marberg (2019) and Abney-McPeek, An and Ng (2020).\",\"PeriodicalId\":36046,\"journal\":{\"name\":\"Algebraic Combinatorics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

给出了阶梯形减去矩形的标准杨格表集与有一定位移的有标记位移的标准杨格表集之间的双射。数值上,这个结果是由于DeWitt(2012)。结合其他已知的双射,给出了阶梯减矩形杨氏表的乘积公式的双射证明。这解决了Morales, Pak和Panova(2019)提出的一个开放问题,并允许有效的随机抽样。其他应用包括半标准杨表的双射,以及楼梯形状的lr系数的Stembridge对称的双射证明。我们还将这些结果扩展到k理论组合学中的集值标准Young表,从而得到Lewis和Marberg(2019)以及Abney-McPeek、An和Ng(2020)对结果的新证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bijecting hidden symmetries for skew staircase shapes
We present a bijection between the set of standard Young tableaux of staircase minus rectangle shape, and the set of marked shifted standard Young tableaux of a certain shifted shape. Numerically, this result is due to DeWitt (2012). Combined with other known bijections this gives a bijective proof of the product formula for the number of standard Young tableaux of staircase minus rectangle shape. This resolves an open problem by Morales, Pak and Panova (2019), and allows for efficient random sampling. Other applications include a bijection for semistandard Young tableaux, and a bijective proof of Stembridge's symmetry of LR-coefficients of the staircase shape. We also extend these results to set-valued standard Young tableaux in the combinatorics of K-theory, leading to new proofs of results by Lewis and Marberg (2019) and Abney-McPeek, An and Ng (2020).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信