等离子喷涂CoCrFeNiMo HEA涂层在腐蚀溶液中的结构和电化学腐蚀性能

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Liu Zhicheng, K. Dejun
{"title":"等离子喷涂CoCrFeNiMo HEA涂层在腐蚀溶液中的结构和电化学腐蚀性能","authors":"Liu Zhicheng, K. Dejun","doi":"10.1080/1478422X.2022.2120945","DOIUrl":null,"url":null,"abstract":"ABSTRACT A CoCrFeNiMo high-entropy alloy (HEA) coating was prepared on Ti6Al4V alloy by plasma spraying technique. The microstructure and phases of the obtained coating were analysed using an ultra-depth-of-field microscope and X-ray diffraction, respectively. The electrochemical corrosion properties of CoCrFeNiMo HEA coating in 3.5% NaCl, 0.1 M H2SO4 and 0.1 M NaOH solutions were comparatively evaluated using an electrochemical workstation, and the corrosion mechanisms were also discussed by the corrosion models. The results show that the CoCrFeNiMo HEA coating is mainly a solid solution structure of face-centered cubic, which forms mechanical bonding at the coating interface. The charge transfer resistance R ct of 597 × 1016 μA·cm–2 in 0.1 M H2SO4 solution is the highest and the corrosion current density i corr of 4.203 × 10–7 μA·cm–2 also presents the lowest among the three kinds of corrosive solutions, which shows the highest electrochemical corrosion resistance. As a result, the sequence of corrosion resistance is in 0.1 M H2SO4 solution > in 3.5% NaCl solution > in 0.1 M NaOH solution, in which the corrosion resistance is further improved by the passive film on the CoCrFeNiMo HEA coating.","PeriodicalId":10711,"journal":{"name":"Corrosion Engineering, Science and Technology","volume":"57 1","pages":"730 - 739"},"PeriodicalIF":1.5000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Structural and electrochemical corrosion properties of plasma-sprayed CoCrFeNiMo HEA coating in corrosive solutions\",\"authors\":\"Liu Zhicheng, K. Dejun\",\"doi\":\"10.1080/1478422X.2022.2120945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT A CoCrFeNiMo high-entropy alloy (HEA) coating was prepared on Ti6Al4V alloy by plasma spraying technique. The microstructure and phases of the obtained coating were analysed using an ultra-depth-of-field microscope and X-ray diffraction, respectively. The electrochemical corrosion properties of CoCrFeNiMo HEA coating in 3.5% NaCl, 0.1 M H2SO4 and 0.1 M NaOH solutions were comparatively evaluated using an electrochemical workstation, and the corrosion mechanisms were also discussed by the corrosion models. The results show that the CoCrFeNiMo HEA coating is mainly a solid solution structure of face-centered cubic, which forms mechanical bonding at the coating interface. The charge transfer resistance R ct of 597 × 1016 μA·cm–2 in 0.1 M H2SO4 solution is the highest and the corrosion current density i corr of 4.203 × 10–7 μA·cm–2 also presents the lowest among the three kinds of corrosive solutions, which shows the highest electrochemical corrosion resistance. As a result, the sequence of corrosion resistance is in 0.1 M H2SO4 solution > in 3.5% NaCl solution > in 0.1 M NaOH solution, in which the corrosion resistance is further improved by the passive film on the CoCrFeNiMo HEA coating.\",\"PeriodicalId\":10711,\"journal\":{\"name\":\"Corrosion Engineering, Science and Technology\",\"volume\":\"57 1\",\"pages\":\"730 - 739\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Engineering, Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/1478422X.2022.2120945\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Engineering, Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/1478422X.2022.2120945","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

摘要:采用等离子喷涂技术在Ti6Al4V合金表面制备CoCrFeNiMo高熵合金(HEA)涂层。利用超景深显微镜和x射线衍射分析了涂层的显微组织和物相。利用电化学工作站对比评价了CoCrFeNiMo HEA涂层在3.5% NaCl、0.1 M H2SO4和0.1 M NaOH溶液中的电化学腐蚀性能,并通过腐蚀模型探讨了腐蚀机理。结果表明:CoCrFeNiMo HEA涂层主要为面心立方固溶结构,在涂层界面处形成机械键合;在0.1 M H2SO4溶液中电荷转移电阻rct最高,为597 × 1016 μA·cm-2,腐蚀电流密度rct最低,为4.203 × 10-7 μA·cm-2,具有最高的电化学耐蚀性。结果表明,CoCrFeNiMo HEA涂层的耐蚀性顺序为:在0.1 M H2SO4溶液中>在3.5% NaCl溶液中>在0.1 M NaOH溶液中,其中CoCrFeNiMo HEA涂层的钝化膜进一步提高了其耐蚀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural and electrochemical corrosion properties of plasma-sprayed CoCrFeNiMo HEA coating in corrosive solutions
ABSTRACT A CoCrFeNiMo high-entropy alloy (HEA) coating was prepared on Ti6Al4V alloy by plasma spraying technique. The microstructure and phases of the obtained coating were analysed using an ultra-depth-of-field microscope and X-ray diffraction, respectively. The electrochemical corrosion properties of CoCrFeNiMo HEA coating in 3.5% NaCl, 0.1 M H2SO4 and 0.1 M NaOH solutions were comparatively evaluated using an electrochemical workstation, and the corrosion mechanisms were also discussed by the corrosion models. The results show that the CoCrFeNiMo HEA coating is mainly a solid solution structure of face-centered cubic, which forms mechanical bonding at the coating interface. The charge transfer resistance R ct of 597 × 1016 μA·cm–2 in 0.1 M H2SO4 solution is the highest and the corrosion current density i corr of 4.203 × 10–7 μA·cm–2 also presents the lowest among the three kinds of corrosive solutions, which shows the highest electrochemical corrosion resistance. As a result, the sequence of corrosion resistance is in 0.1 M H2SO4 solution > in 3.5% NaCl solution > in 0.1 M NaOH solution, in which the corrosion resistance is further improved by the passive film on the CoCrFeNiMo HEA coating.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Corrosion Engineering, Science and Technology
Corrosion Engineering, Science and Technology 工程技术-材料科学:综合
CiteScore
3.20
自引率
5.60%
发文量
58
审稿时长
3.4 months
期刊介绍: Corrosion Engineering, Science and Technology provides broad international coverage of research and practice in corrosion processes and corrosion control. Peer-reviewed contributions address all aspects of corrosion engineering and corrosion science; there is strong emphasis on effective design and materials selection to combat corrosion and the journal carries failure case studies to further knowledge in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信