仿射赫克范畴的轨迹

IF 1.5 1区 数学 Q1 MATHEMATICS
E. Gorsky, Andrei Neguț
{"title":"仿射赫克范畴的轨迹","authors":"E. Gorsky, Andrei Neguț","doi":"10.1112/plms.12523","DOIUrl":null,"url":null,"abstract":"We compare the (horizontal) trace of the affine Hecke category with the elliptic Hall algebra, thus obtaining an “affine” version of the construction of Gorsky et al. (Int. Math. Res. Not. IMRN 2022 (2022) 11304–11400). Explicitly, we show that the aforementioned trace is generated by the objects Ed=Tr(Y1d1⋯YndnT1⋯Tn−1)$E_{\\mathbf {d}} = {\\rm Tr}(Y_1^{d_1} \\dots Y_n^{d_n} T_1 \\dots T_{n-1})$ as d=(d1,⋯,dn)∈Zn$\\mathbf {d}= (d_1,\\dots ,d_n) \\in \\mathbb {Z}^n$ , where Yi$Y_i$ denote the Wakimoto objects of Elias and Ti$T_i$ denote Rouquier complexes. We compute certain categorical commutators between the Ed$E_{\\mathbf {d}}$ 's and show that they match the categorical commutators between the sheaves Ed$\\mathcal {E}_{\\mathbf {d}}$ on the flag commuting stack that were considered in Neguț (Publ. Math. Inst. Hautes Études Sci. 135 (2022) 337–418). At the level of K$K$ ‐theory, these commutators yield a certain integral form A∼$\\widetilde{\\mathcal {A}}$ of the elliptic Hall algebra, which we can thus map to the K$K$ ‐theory of the trace of the affine Hecke category.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The trace of the affine Hecke category\",\"authors\":\"E. Gorsky, Andrei Neguț\",\"doi\":\"10.1112/plms.12523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compare the (horizontal) trace of the affine Hecke category with the elliptic Hall algebra, thus obtaining an “affine” version of the construction of Gorsky et al. (Int. Math. Res. Not. IMRN 2022 (2022) 11304–11400). Explicitly, we show that the aforementioned trace is generated by the objects Ed=Tr(Y1d1⋯YndnT1⋯Tn−1)$E_{\\\\mathbf {d}} = {\\\\rm Tr}(Y_1^{d_1} \\\\dots Y_n^{d_n} T_1 \\\\dots T_{n-1})$ as d=(d1,⋯,dn)∈Zn$\\\\mathbf {d}= (d_1,\\\\dots ,d_n) \\\\in \\\\mathbb {Z}^n$ , where Yi$Y_i$ denote the Wakimoto objects of Elias and Ti$T_i$ denote Rouquier complexes. We compute certain categorical commutators between the Ed$E_{\\\\mathbf {d}}$ 's and show that they match the categorical commutators between the sheaves Ed$\\\\mathcal {E}_{\\\\mathbf {d}}$ on the flag commuting stack that were considered in Neguț (Publ. Math. Inst. Hautes Études Sci. 135 (2022) 337–418). At the level of K$K$ ‐theory, these commutators yield a certain integral form A∼$\\\\widetilde{\\\\mathcal {A}}$ of the elliptic Hall algebra, which we can thus map to the K$K$ ‐theory of the trace of the affine Hecke category.\",\"PeriodicalId\":49667,\"journal\":{\"name\":\"Proceedings of the London Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/plms.12523\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12523","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们将仿射Hecke范畴的(水平)轨迹与椭圆霍尔代数进行比较,从而获得Gorsky等人构造的“仿射”版本。数学。研究》。Imrn 2022(2022) 1104 - 11400)。明确地,我们证明了上述轨迹是由对象Ed=Tr(Y1d1⋯YndnT1⋯Tn−1)$E_{\mathbf {d}} = {\rm Tr}(Y_1^{d_1} \dots Y_n^ T_1 \dots T_{n-1})$作为d=(d1,⋯,dn)∈Zn$\mathbf {d}= (d_1,\dots,d_n) \in \mathbb {Z}^n$产生的,其中Yi$Y_i$表示Elias的Wakimoto对象,Ti$T_i$表示Rouquier复形。我们计算了Ed$E_{\mathbf {d}}$之间的某些范畴对易子,并证明它们与neguii (Publ)中考虑的标志交换堆栈上Ed$\mathcal {E}_{\mathbf {d}}$之间的范畴对易子相匹配。数学。高等学院Études自然科学学报,135(2022)337-418。在K$K$‐理论的水平上,这些对易子产生椭圆霍尔代数的某种积分形式a ~ $\ widdetilde {\mathcal {a}}$,因此我们可以将其映射到仿射Hecke范畴的迹的K$K$‐理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The trace of the affine Hecke category
We compare the (horizontal) trace of the affine Hecke category with the elliptic Hall algebra, thus obtaining an “affine” version of the construction of Gorsky et al. (Int. Math. Res. Not. IMRN 2022 (2022) 11304–11400). Explicitly, we show that the aforementioned trace is generated by the objects Ed=Tr(Y1d1⋯YndnT1⋯Tn−1)$E_{\mathbf {d}} = {\rm Tr}(Y_1^{d_1} \dots Y_n^{d_n} T_1 \dots T_{n-1})$ as d=(d1,⋯,dn)∈Zn$\mathbf {d}= (d_1,\dots ,d_n) \in \mathbb {Z}^n$ , where Yi$Y_i$ denote the Wakimoto objects of Elias and Ti$T_i$ denote Rouquier complexes. We compute certain categorical commutators between the Ed$E_{\mathbf {d}}$ 's and show that they match the categorical commutators between the sheaves Ed$\mathcal {E}_{\mathbf {d}}$ on the flag commuting stack that were considered in Neguț (Publ. Math. Inst. Hautes Études Sci. 135 (2022) 337–418). At the level of K$K$ ‐theory, these commutators yield a certain integral form A∼$\widetilde{\mathcal {A}}$ of the elliptic Hall algebra, which we can thus map to the K$K$ ‐theory of the trace of the affine Hecke category.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信