具有BMO反对称部分的椭圆算子Dirichlet问题的全局梯度估计

IF 3.2 1区 数学 Q1 MATHEMATICS
Sibei Yang, Dachun Yang, Wen Yuan
{"title":"具有BMO反对称部分的椭圆算子Dirichlet问题的全局梯度估计","authors":"Sibei Yang, Dachun Yang, Wen Yuan","doi":"10.1515/anona-2022-0247","DOIUrl":null,"url":null,"abstract":"Abstract Let n ≥ 2 n\\ge 2 and Ω ⊂ R n \\Omega \\subset {{\\mathbb{R}}}^{n} be a bounded nontangentially accessible domain. In this article, the authors investigate (weighted) global gradient estimates for Dirichlet boundary value problems of second-order elliptic equations of divergence form with an elliptic symmetric part and a BMO antisymmetric part in Ω \\Omega . More precisely, for any given p ∈ ( 2 , ∞ ) p\\in \\left(2,\\infty ) , the authors prove that a weak reverse Hölder inequality with exponent p p implies the global W 1 , p {W}^{1,p} estimate and the global weighted W 1 , q {W}^{1,q} estimate, with q ∈ [ 2 , p ] q\\in \\left[2,p] and some Muckenhoupt weights, of solutions to Dirichlet boundary value problems. As applications, the authors establish some global gradient estimates for solutions to Dirichlet boundary value problems of second-order elliptic equations of divergence form with small BMO {\\rm{BMO}} symmetric part and small BMO {\\rm{BMO}} antisymmetric part, respectively, on bounded Lipschitz domains, quasi-convex domains, Reifenberg flat domains, C 1 {C}^{1} domains, or (semi-)convex domains, in weighted Lebesgue spaces. Furthermore, as further applications, the authors obtain the global gradient estimate, respectively, in (weighted) Lorentz spaces, (Lorentz–)Morrey spaces, (Musielak–)Orlicz spaces, and variable Lebesgue spaces. Even on global gradient estimates in Lebesgue spaces, the results obtained in this article improve the known results via weakening the assumption on the coefficient matrix.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"1496 - 1530"},"PeriodicalIF":3.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global gradient estimates for Dirichlet problems of elliptic operators with a BMO antisymmetric part\",\"authors\":\"Sibei Yang, Dachun Yang, Wen Yuan\",\"doi\":\"10.1515/anona-2022-0247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let n ≥ 2 n\\\\ge 2 and Ω ⊂ R n \\\\Omega \\\\subset {{\\\\mathbb{R}}}^{n} be a bounded nontangentially accessible domain. In this article, the authors investigate (weighted) global gradient estimates for Dirichlet boundary value problems of second-order elliptic equations of divergence form with an elliptic symmetric part and a BMO antisymmetric part in Ω \\\\Omega . More precisely, for any given p ∈ ( 2 , ∞ ) p\\\\in \\\\left(2,\\\\infty ) , the authors prove that a weak reverse Hölder inequality with exponent p p implies the global W 1 , p {W}^{1,p} estimate and the global weighted W 1 , q {W}^{1,q} estimate, with q ∈ [ 2 , p ] q\\\\in \\\\left[2,p] and some Muckenhoupt weights, of solutions to Dirichlet boundary value problems. As applications, the authors establish some global gradient estimates for solutions to Dirichlet boundary value problems of second-order elliptic equations of divergence form with small BMO {\\\\rm{BMO}} symmetric part and small BMO {\\\\rm{BMO}} antisymmetric part, respectively, on bounded Lipschitz domains, quasi-convex domains, Reifenberg flat domains, C 1 {C}^{1} domains, or (semi-)convex domains, in weighted Lebesgue spaces. Furthermore, as further applications, the authors obtain the global gradient estimate, respectively, in (weighted) Lorentz spaces, (Lorentz–)Morrey spaces, (Musielak–)Orlicz spaces, and variable Lebesgue spaces. Even on global gradient estimates in Lebesgue spaces, the results obtained in this article improve the known results via weakening the assumption on the coefficient matrix.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\"11 1\",\"pages\":\"1496 - 1530\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0247\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0247","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设n≥2n\ge 2和Ω∧R n \Omega \subset {{\mathbb{R}}}^{n} 是一个有界的非切可达域。本文研究了具有椭圆对称部分和BMO反对称部分的二阶发散型椭圆方程的Dirichlet边值问题的(加权)全局梯度估计 \Omega 。更准确地说,对于任意给定的p∈(2,∞)p\in \left(2);\infty ),证明了一个指数为p p的弱逆Hölder不等式暗示了全局W 1, p {w}^{1,p} 估计和全局加权W 1, q {w}^{1、q} 估计,其中q∈[2,p] q\in \left[2,p] 狄利克雷边值问题解的Muckenhoupt权值。作为应用,本文建立了具有小BMO的二阶发散型椭圆方程的Dirichlet边值问题解的全局梯度估计 {\rm{BMO}} 对称部分和小BMO {\rm{BMO}} 分别在有界Lipschitz域、拟凸域、Reifenberg平面域、c1上的反对称部分 {c}^{1} 域,或(半)凸域,在加权勒贝格空间。此外,作为进一步的应用,作者分别在(加权)Lorentz空间、(Lorentz -)Morrey空间、(Musielak -)Orlicz空间和可变Lebesgue空间中获得了全局梯度估计。即使在Lebesgue空间的全局梯度估计上,本文的结果也通过弱化对系数矩阵的假设而改进了已知结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global gradient estimates for Dirichlet problems of elliptic operators with a BMO antisymmetric part
Abstract Let n ≥ 2 n\ge 2 and Ω ⊂ R n \Omega \subset {{\mathbb{R}}}^{n} be a bounded nontangentially accessible domain. In this article, the authors investigate (weighted) global gradient estimates for Dirichlet boundary value problems of second-order elliptic equations of divergence form with an elliptic symmetric part and a BMO antisymmetric part in Ω \Omega . More precisely, for any given p ∈ ( 2 , ∞ ) p\in \left(2,\infty ) , the authors prove that a weak reverse Hölder inequality with exponent p p implies the global W 1 , p {W}^{1,p} estimate and the global weighted W 1 , q {W}^{1,q} estimate, with q ∈ [ 2 , p ] q\in \left[2,p] and some Muckenhoupt weights, of solutions to Dirichlet boundary value problems. As applications, the authors establish some global gradient estimates for solutions to Dirichlet boundary value problems of second-order elliptic equations of divergence form with small BMO {\rm{BMO}} symmetric part and small BMO {\rm{BMO}} antisymmetric part, respectively, on bounded Lipschitz domains, quasi-convex domains, Reifenberg flat domains, C 1 {C}^{1} domains, or (semi-)convex domains, in weighted Lebesgue spaces. Furthermore, as further applications, the authors obtain the global gradient estimate, respectively, in (weighted) Lorentz spaces, (Lorentz–)Morrey spaces, (Musielak–)Orlicz spaces, and variable Lebesgue spaces. Even on global gradient estimates in Lebesgue spaces, the results obtained in this article improve the known results via weakening the assumption on the coefficient matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信