Noroz Khan Baloch Noroz, Saleem Ahmed, Ramesh Kumar, D. M. S. Bhatti, Yawar Rehman
{"title":"基于2D-CNN的手指静脉图像双对比度调整与识别","authors":"Noroz Khan Baloch Noroz, Saleem Ahmed, Ramesh Kumar, D. M. S. Bhatti, Yawar Rehman","doi":"10.30537/sjcms.v6i1.1001","DOIUrl":null,"url":null,"abstract":"The suggested process enhances the low contrast of the finger-vein image using dual contrast adaptive histogram equalization (DCLAHE) for visual attributes. The finger-vein histogram intensity is split out all over the image when dual CLAHE is used. For preprocessing, the finger-vein image dataset is obtained from the SDUMLA-HMT finger-vein database. Following the deployment of DCLAHE, the updated dataset is used to recognize objects using an improved 2D-CNN model. The 2D CNN model learns features by optimizing values of a preprocessed dataset. The accuracy of this model stands at 91.114%.","PeriodicalId":32391,"journal":{"name":"Sukkur IBA Journal of Computing and Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finger-Vein Image Dual Contrast Adjustment and Recognition Using 2D-CNN\",\"authors\":\"Noroz Khan Baloch Noroz, Saleem Ahmed, Ramesh Kumar, D. M. S. Bhatti, Yawar Rehman\",\"doi\":\"10.30537/sjcms.v6i1.1001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The suggested process enhances the low contrast of the finger-vein image using dual contrast adaptive histogram equalization (DCLAHE) for visual attributes. The finger-vein histogram intensity is split out all over the image when dual CLAHE is used. For preprocessing, the finger-vein image dataset is obtained from the SDUMLA-HMT finger-vein database. Following the deployment of DCLAHE, the updated dataset is used to recognize objects using an improved 2D-CNN model. The 2D CNN model learns features by optimizing values of a preprocessed dataset. The accuracy of this model stands at 91.114%.\",\"PeriodicalId\":32391,\"journal\":{\"name\":\"Sukkur IBA Journal of Computing and Mathematical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sukkur IBA Journal of Computing and Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30537/sjcms.v6i1.1001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sukkur IBA Journal of Computing and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30537/sjcms.v6i1.1001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finger-Vein Image Dual Contrast Adjustment and Recognition Using 2D-CNN
The suggested process enhances the low contrast of the finger-vein image using dual contrast adaptive histogram equalization (DCLAHE) for visual attributes. The finger-vein histogram intensity is split out all over the image when dual CLAHE is used. For preprocessing, the finger-vein image dataset is obtained from the SDUMLA-HMT finger-vein database. Following the deployment of DCLAHE, the updated dataset is used to recognize objects using an improved 2D-CNN model. The 2D CNN model learns features by optimizing values of a preprocessed dataset. The accuracy of this model stands at 91.114%.