基于2D-CNN的手指静脉图像双对比度调整与识别

Noroz Khan Baloch Noroz, Saleem Ahmed, Ramesh Kumar, D. M. S. Bhatti, Yawar Rehman
{"title":"基于2D-CNN的手指静脉图像双对比度调整与识别","authors":"Noroz Khan Baloch Noroz, Saleem Ahmed, Ramesh Kumar, D. M. S. Bhatti, Yawar Rehman","doi":"10.30537/sjcms.v6i1.1001","DOIUrl":null,"url":null,"abstract":"The suggested process enhances the low contrast of the finger-vein image using dual contrast adaptive histogram equalization (DCLAHE) for visual attributes. The finger-vein histogram intensity is split out all over the image when dual CLAHE is used. For preprocessing, the finger-vein image dataset is obtained from the SDUMLA-HMT finger-vein database. Following the deployment of DCLAHE, the updated dataset is used to recognize objects using an improved 2D-CNN model. The 2D CNN model learns features by optimizing values of a preprocessed dataset. The accuracy of this model stands at 91.114%.","PeriodicalId":32391,"journal":{"name":"Sukkur IBA Journal of Computing and Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finger-Vein Image Dual Contrast Adjustment and Recognition Using 2D-CNN\",\"authors\":\"Noroz Khan Baloch Noroz, Saleem Ahmed, Ramesh Kumar, D. M. S. Bhatti, Yawar Rehman\",\"doi\":\"10.30537/sjcms.v6i1.1001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The suggested process enhances the low contrast of the finger-vein image using dual contrast adaptive histogram equalization (DCLAHE) for visual attributes. The finger-vein histogram intensity is split out all over the image when dual CLAHE is used. For preprocessing, the finger-vein image dataset is obtained from the SDUMLA-HMT finger-vein database. Following the deployment of DCLAHE, the updated dataset is used to recognize objects using an improved 2D-CNN model. The 2D CNN model learns features by optimizing values of a preprocessed dataset. The accuracy of this model stands at 91.114%.\",\"PeriodicalId\":32391,\"journal\":{\"name\":\"Sukkur IBA Journal of Computing and Mathematical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sukkur IBA Journal of Computing and Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30537/sjcms.v6i1.1001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sukkur IBA Journal of Computing and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30537/sjcms.v6i1.1001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

所提出的过程使用用于视觉属性的双对比度自适应直方图均衡(DCLAHE)来增强手指静脉图像的低对比度。当使用双CLAHE时,手指静脉直方图强度在整个图像上被分割。为了进行预处理,从SDUMLA-HMT手指静脉数据库中获得手指静脉图像数据集。在部署DCLAHE之后,使用改进的2D-CNN模型使用更新的数据集来识别对象。2D CNN模型通过优化预处理数据集的值来学习特征。该模型的准确率为91.114%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finger-Vein Image Dual Contrast Adjustment and Recognition Using 2D-CNN
The suggested process enhances the low contrast of the finger-vein image using dual contrast adaptive histogram equalization (DCLAHE) for visual attributes. The finger-vein histogram intensity is split out all over the image when dual CLAHE is used. For preprocessing, the finger-vein image dataset is obtained from the SDUMLA-HMT finger-vein database. Following the deployment of DCLAHE, the updated dataset is used to recognize objects using an improved 2D-CNN model. The 2D CNN model learns features by optimizing values of a preprocessed dataset. The accuracy of this model stands at 91.114%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信