医学和医疗保健决策的机器学习

Q3 Pharmacology, Toxicology and Pharmaceutics
Borislava Toleva, Ivan Ivanov
{"title":"医学和医疗保健决策的机器学习","authors":"Borislava Toleva, Ivan Ivanov","doi":"10.47750/pnr.2023.14.s02.295","DOIUrl":null,"url":null,"abstract":"In this research we summarize how machine learning algorithms can be used for decision making that can affect health policies. We present modified ANOVA algorithm for identifying marker leukemia genes that allows deeper examination of genes subsets that can increase the risk of developing leukemia. The algorithm uses the ANOVA, the bootstrap and classification to provide an insight whether a particular group of genes affects cancer development. So, medical practitioners can select a group of leukemia genes, test it by the algorithm and further decide whether to examine the group in medical test or switch a gene  in the subset. We also present algorithms to outline factors that affect covid geographical distribution and use of vaccines. Some of our key findings are that leukemia genes can be ranked by importance and in rare cases mutations in less important genes can also lead to leukemia development. In terms of covid, we find that the economic development of a country can be related to the willingness of people to vaccinate.","PeriodicalId":16728,"journal":{"name":"Journal of Pharmaceutical Negative Results","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning for decision making in medicine and healthcare\",\"authors\":\"Borislava Toleva, Ivan Ivanov\",\"doi\":\"10.47750/pnr.2023.14.s02.295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research we summarize how machine learning algorithms can be used for decision making that can affect health policies. We present modified ANOVA algorithm for identifying marker leukemia genes that allows deeper examination of genes subsets that can increase the risk of developing leukemia. The algorithm uses the ANOVA, the bootstrap and classification to provide an insight whether a particular group of genes affects cancer development. So, medical practitioners can select a group of leukemia genes, test it by the algorithm and further decide whether to examine the group in medical test or switch a gene  in the subset. We also present algorithms to outline factors that affect covid geographical distribution and use of vaccines. Some of our key findings are that leukemia genes can be ranked by importance and in rare cases mutations in less important genes can also lead to leukemia development. In terms of covid, we find that the economic development of a country can be related to the willingness of people to vaccinate.\",\"PeriodicalId\":16728,\"journal\":{\"name\":\"Journal of Pharmaceutical Negative Results\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmaceutical Negative Results\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47750/pnr.2023.14.s02.295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical Negative Results","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47750/pnr.2023.14.s02.295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们总结了机器学习算法如何用于影响健康政策的决策。我们提出了改进的方差分析算法,用于识别标记白血病基因,允许更深入地检查可以增加患白血病风险的基因亚群。该算法使用方差分析、自举和分类来提供一组特定基因是否影响癌症发展的见解。因此,医生可以选择一组白血病基因,通过算法进行测试,并进一步决定是否在医学测试中检查该组或切换子集中的一个基因。我们还提出了算法来概述影响covid地理分布和疫苗使用的因素。我们的一些主要发现是,白血病基因可以按重要性排序,在极少数情况下,不太重要的基因突变也可能导致白血病的发展。就covid而言,我们发现一个国家的经济发展可能与人们接种疫苗的意愿有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning for decision making in medicine and healthcare
In this research we summarize how machine learning algorithms can be used for decision making that can affect health policies. We present modified ANOVA algorithm for identifying marker leukemia genes that allows deeper examination of genes subsets that can increase the risk of developing leukemia. The algorithm uses the ANOVA, the bootstrap and classification to provide an insight whether a particular group of genes affects cancer development. So, medical practitioners can select a group of leukemia genes, test it by the algorithm and further decide whether to examine the group in medical test or switch a gene  in the subset. We also present algorithms to outline factors that affect covid geographical distribution and use of vaccines. Some of our key findings are that leukemia genes can be ranked by importance and in rare cases mutations in less important genes can also lead to leukemia development. In terms of covid, we find that the economic development of a country can be related to the willingness of people to vaccinate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信