Matthias von Davier, Lale Khorramdel, Qiwei He, H. Shin, Haiwen Chen
{"title":"基于技术的大规模评估心理测量人口模型的发展:挑战与机遇概述","authors":"Matthias von Davier, Lale Khorramdel, Qiwei He, H. Shin, Haiwen Chen","doi":"10.3102/1076998619881789","DOIUrl":null,"url":null,"abstract":"International large-scale assessments (ILSAs) transitioned from paper-based assessments to computer-based assessments (CBAs) facilitating the use of new item types and more effective data collection tools. This allows implementation of more complex test designs and to collect process and response time (RT) data. These new data types can be used to improve data quality and the accuracy of test scores obtained through latent regression (population) models. However, the move to a CBA also poses challenges for comparability and trend measurement, one of the major goals in ISLAs. We provide an overview of current methods used in ILSAs to examine and assure the comparability of data across different assessment modes and methods that improve the accuracy of test scores by making use of new data types provided by a CBA.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":"44 1","pages":"671 - 705"},"PeriodicalIF":1.9000,"publicationDate":"2019-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3102/1076998619881789","citationCount":"26","resultStr":"{\"title\":\"Developments in Psychometric Population Models for Technology-Based Large-Scale Assessments: An Overview of Challenges and Opportunities\",\"authors\":\"Matthias von Davier, Lale Khorramdel, Qiwei He, H. Shin, Haiwen Chen\",\"doi\":\"10.3102/1076998619881789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"International large-scale assessments (ILSAs) transitioned from paper-based assessments to computer-based assessments (CBAs) facilitating the use of new item types and more effective data collection tools. This allows implementation of more complex test designs and to collect process and response time (RT) data. These new data types can be used to improve data quality and the accuracy of test scores obtained through latent regression (population) models. However, the move to a CBA also poses challenges for comparability and trend measurement, one of the major goals in ISLAs. We provide an overview of current methods used in ILSAs to examine and assure the comparability of data across different assessment modes and methods that improve the accuracy of test scores by making use of new data types provided by a CBA.\",\"PeriodicalId\":48001,\"journal\":{\"name\":\"Journal of Educational and Behavioral Statistics\",\"volume\":\"44 1\",\"pages\":\"671 - 705\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2019-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3102/1076998619881789\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Educational and Behavioral Statistics\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3102/1076998619881789\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/1076998619881789","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Developments in Psychometric Population Models for Technology-Based Large-Scale Assessments: An Overview of Challenges and Opportunities
International large-scale assessments (ILSAs) transitioned from paper-based assessments to computer-based assessments (CBAs) facilitating the use of new item types and more effective data collection tools. This allows implementation of more complex test designs and to collect process and response time (RT) data. These new data types can be used to improve data quality and the accuracy of test scores obtained through latent regression (population) models. However, the move to a CBA also poses challenges for comparability and trend measurement, one of the major goals in ISLAs. We provide an overview of current methods used in ILSAs to examine and assure the comparability of data across different assessment modes and methods that improve the accuracy of test scores by making use of new data types provided by a CBA.
期刊介绍:
Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.