{"title":"固定波束结构MEMS双通道微波功率传感器的研究","authors":"Chen Li, Ximing Guo, Aodi Xu, Debo Wang","doi":"10.1088/1361-6439/acf2a6","DOIUrl":null,"url":null,"abstract":"To improve the sensitivity and dynamic range of microwave power sensors, a micro-electromechanical system (MEMS) dual-channel microwave power sensor is proposed in this study. The sensor is designed and manufactured using the GaAs monolithic microwave integrated circuit` (MMIC) process and MEMS technology. The microwave performance, overload power and sensitivity are theoretically studied. At 8–12 GHz, the return loss of the sensors with three different fixed beam sizes are approximately −10 dB, which is good microwave performance. The sensitivities for capacitive detection channel of the two sensors with larger sizes are 2.4 fF W−1 @10 GHz and 14.5 fF W−1 @10 GHz, respectively, and the sensitivities of the thermoelectric detection channel of the three sensors is 25.7 mV W−1, 24.9 mV W−1 and 24.2 mV W−1, respectively. Compared with traditional microwave power sensors, the sensor proposed takes into account the advantages of microwave power sensors in both thermoelectric and capacitive structures. This work helps lay the foundation for the design of microwave power sensors with a fixed beam structure and thermoelectric microwave power sensors.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on MEMS dual-channel microwave power sensor with fixed beam structure\",\"authors\":\"Chen Li, Ximing Guo, Aodi Xu, Debo Wang\",\"doi\":\"10.1088/1361-6439/acf2a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the sensitivity and dynamic range of microwave power sensors, a micro-electromechanical system (MEMS) dual-channel microwave power sensor is proposed in this study. The sensor is designed and manufactured using the GaAs monolithic microwave integrated circuit` (MMIC) process and MEMS technology. The microwave performance, overload power and sensitivity are theoretically studied. At 8–12 GHz, the return loss of the sensors with three different fixed beam sizes are approximately −10 dB, which is good microwave performance. The sensitivities for capacitive detection channel of the two sensors with larger sizes are 2.4 fF W−1 @10 GHz and 14.5 fF W−1 @10 GHz, respectively, and the sensitivities of the thermoelectric detection channel of the three sensors is 25.7 mV W−1, 24.9 mV W−1 and 24.2 mV W−1, respectively. Compared with traditional microwave power sensors, the sensor proposed takes into account the advantages of microwave power sensors in both thermoelectric and capacitive structures. This work helps lay the foundation for the design of microwave power sensors with a fixed beam structure and thermoelectric microwave power sensors.\",\"PeriodicalId\":16346,\"journal\":{\"name\":\"Journal of Micromechanics and Microengineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechanics and Microengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6439/acf2a6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/acf2a6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Research on MEMS dual-channel microwave power sensor with fixed beam structure
To improve the sensitivity and dynamic range of microwave power sensors, a micro-electromechanical system (MEMS) dual-channel microwave power sensor is proposed in this study. The sensor is designed and manufactured using the GaAs monolithic microwave integrated circuit` (MMIC) process and MEMS technology. The microwave performance, overload power and sensitivity are theoretically studied. At 8–12 GHz, the return loss of the sensors with three different fixed beam sizes are approximately −10 dB, which is good microwave performance. The sensitivities for capacitive detection channel of the two sensors with larger sizes are 2.4 fF W−1 @10 GHz and 14.5 fF W−1 @10 GHz, respectively, and the sensitivities of the thermoelectric detection channel of the three sensors is 25.7 mV W−1, 24.9 mV W−1 and 24.2 mV W−1, respectively. Compared with traditional microwave power sensors, the sensor proposed takes into account the advantages of microwave power sensors in both thermoelectric and capacitive structures. This work helps lay the foundation for the design of microwave power sensors with a fixed beam structure and thermoelectric microwave power sensors.
期刊介绍:
Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data.
The journal is focussed on all aspects of:
-nano- and micro- mechanical systems
-nano- and micro- electomechanical systems
-nano- and micro- electrical and mechatronic systems
-nano- and micro- engineering
-nano- and micro- scale science
Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering.
Below are some examples of the topics that are included within the scope of the journal:
-MEMS and NEMS:
Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc.
-Fabrication techniques and manufacturing:
Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing.
-Packaging and Integration technologies.
-Materials, testing, and reliability.
-Micro- and nano-fluidics:
Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip.
-Lab-on-a-chip and micro- and nano-total analysis systems.
-Biomedical systems and devices:
Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces.
-Energy and power:
Including power MEMS/NEMS, energy harvesters, actuators, microbatteries.
-Electronics:
Including flexible electronics, wearable electronics, interface electronics.
-Optical systems.
-Robotics.