W. Munro, N. L. Piparo, Josephine Dias, M. Hanks, K. Nemoto
{"title":"设计未来的量子互联网","authors":"W. Munro, N. L. Piparo, Josephine Dias, M. Hanks, K. Nemoto","doi":"10.1116/5.0092069","DOIUrl":null,"url":null,"abstract":"Principles of quantum mechanics promise a future quantum internet that connects a wide variety of quantum devices together in a coherent and secure fashion. It is well known that due to the size of this quantum internet, quantum repeaters will be a critical part in a similar fashion to the importance of repeaters in today's telecommunications internet. Given the inherent differences between classical and quantum physics, it is essential to establish how a quantum internet will function including how we route information as well as the functionality quantum repeaters will need to provide. Our considerations here go far beyond quantum key distribution and instead focus on a true network of connected quantum devices, including computers and sensors. We show how the efficient operation of such quantum networks relies on the seamless integration of both quantum and classical communication resources.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Designing tomorrow's quantum internet\",\"authors\":\"W. Munro, N. L. Piparo, Josephine Dias, M. Hanks, K. Nemoto\",\"doi\":\"10.1116/5.0092069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Principles of quantum mechanics promise a future quantum internet that connects a wide variety of quantum devices together in a coherent and secure fashion. It is well known that due to the size of this quantum internet, quantum repeaters will be a critical part in a similar fashion to the importance of repeaters in today's telecommunications internet. Given the inherent differences between classical and quantum physics, it is essential to establish how a quantum internet will function including how we route information as well as the functionality quantum repeaters will need to provide. Our considerations here go far beyond quantum key distribution and instead focus on a true network of connected quantum devices, including computers and sensors. We show how the efficient operation of such quantum networks relies on the seamless integration of both quantum and classical communication resources.\",\"PeriodicalId\":93525,\"journal\":{\"name\":\"AVS quantum science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AVS quantum science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/5.0092069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"QUANTUM SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVS quantum science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/5.0092069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Principles of quantum mechanics promise a future quantum internet that connects a wide variety of quantum devices together in a coherent and secure fashion. It is well known that due to the size of this quantum internet, quantum repeaters will be a critical part in a similar fashion to the importance of repeaters in today's telecommunications internet. Given the inherent differences between classical and quantum physics, it is essential to establish how a quantum internet will function including how we route information as well as the functionality quantum repeaters will need to provide. Our considerations here go far beyond quantum key distribution and instead focus on a true network of connected quantum devices, including computers and sensors. We show how the efficient operation of such quantum networks relies on the seamless integration of both quantum and classical communication resources.