度量空间的粗商与一致Roe代数的嵌入

IF 0.7 2区 数学 Q2 MATHEMATICS
B. M. Braga
{"title":"度量空间的粗商与一致Roe代数的嵌入","authors":"B. M. Braga","doi":"10.4171/jncg/463","DOIUrl":null,"url":null,"abstract":"We study embeddings of uniform Roe algebras which have \"large range\" in their codomain and the relation of those with coarse quotients between metric spaces. Among other results, we show that if $Y$ has property A and there is an embedding $\\Phi:\\mathrm{C}^*_u(X)\\to \\mathrm{C}^*_u(Y)$ with \"large range\" and so that $\\Phi(\\ell_\\infty(X))$ is a Cartan subalgebra of $\\mathrm{C}^*_u(Y)$, then there is a bijective coarse quotient $X\\to Y$. This shows that the large scale geometry of $Y$ is, in some sense, controlled by the one of $X$. For instance, if $X$ has finite asymptotic dimension, so does $Y$.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coarse quotients of metric spaces and embeddings of uniform Roe algebras\",\"authors\":\"B. M. Braga\",\"doi\":\"10.4171/jncg/463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study embeddings of uniform Roe algebras which have \\\"large range\\\" in their codomain and the relation of those with coarse quotients between metric spaces. Among other results, we show that if $Y$ has property A and there is an embedding $\\\\Phi:\\\\mathrm{C}^*_u(X)\\\\to \\\\mathrm{C}^*_u(Y)$ with \\\"large range\\\" and so that $\\\\Phi(\\\\ell_\\\\infty(X))$ is a Cartan subalgebra of $\\\\mathrm{C}^*_u(Y)$, then there is a bijective coarse quotient $X\\\\to Y$. This shows that the large scale geometry of $Y$ is, in some sense, controlled by the one of $X$. For instance, if $X$ has finite asymptotic dimension, so does $Y$.\",\"PeriodicalId\":54780,\"journal\":{\"name\":\"Journal of Noncommutative Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Noncommutative Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jncg/463\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/463","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

研究了上域中具有“大值域”的一致Roe代数的嵌入以及度量空间间具有粗商的一致Roe代数的关系。在其他结果中,我们表明,如果$Y$具有性质A,并且存在“大范围”的嵌入$\Phi:\mathrm{C}^*_u(X)\to \mathrm{C}^*_u(Y)$,因此$\Phi(\ell_\infty(X))$是$\mathrm{C}^*_u(Y)$的Cartan子代数,则存在双射粗商$X\to Y$。这说明$Y$的大尺度几何在某种意义上是由$X$的大尺度几何控制的。例如,如果$X$有有限的渐近维数,那么$Y$也有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coarse quotients of metric spaces and embeddings of uniform Roe algebras
We study embeddings of uniform Roe algebras which have "large range" in their codomain and the relation of those with coarse quotients between metric spaces. Among other results, we show that if $Y$ has property A and there is an embedding $\Phi:\mathrm{C}^*_u(X)\to \mathrm{C}^*_u(Y)$ with "large range" and so that $\Phi(\ell_\infty(X))$ is a Cartan subalgebra of $\mathrm{C}^*_u(Y)$, then there is a bijective coarse quotient $X\to Y$. This shows that the large scale geometry of $Y$ is, in some sense, controlled by the one of $X$. For instance, if $X$ has finite asymptotic dimension, so does $Y$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信