{"title":"喷管展弦比和取向对多椭圆射流流动特性的影响","authors":"H. Teramoto, T. Kiwata, Kako Yajima","doi":"10.1115/ajkfluids2019-5255","DOIUrl":null,"url":null,"abstract":"\n An experimental study is conducted to investigate the flow characteristics of multiple elliptic jets issuing from a 6 × 6 nozzle array at a relatively low-Reynolds number (Re = 4.3 × 103). Two aspect ratios of the multiple elliptic nozzles (equivalent diameter, de, of a nozzle was 6 mm), namely a/b = 2.25 and 6.25, where a and b are the radii of the major and minor axes of an elliptic nozzle, respectively, and two nozzle azimuthal orientations, namely the same and alternate azimuthal orientation arrangements, were used. The mean and fluctuating velocities were measured using a constant-temperature hot-wire anemometer. The multiple jets located at the side of the ambient fluid were stretched due to interactions between the self-induced flow of an elliptic vortex ring and the secondary flow caused by the entrainment of the ambient fluid. For a/b = 2.25, axis switching occurred only once in the range of 1 < x/de ≤ 3 for both nozzle azimuthal orientations. For a/b = 6.25 and the same azimuthal orientation arrangement, axis switching occurred only once at 3 < x/de ≤ 5; axis switching did not occur for the alternate azimuthal orientation arrangement. Thus, the flow characteristics of multiple elliptic jets are influenced by the azimuthal orientation of adjoining nozzles.","PeriodicalId":44704,"journal":{"name":"Journal of Fluid Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of nozzle aspect ratio and orientation on flow characteristics of multiple elliptic jets\",\"authors\":\"H. Teramoto, T. Kiwata, Kako Yajima\",\"doi\":\"10.1115/ajkfluids2019-5255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n An experimental study is conducted to investigate the flow characteristics of multiple elliptic jets issuing from a 6 × 6 nozzle array at a relatively low-Reynolds number (Re = 4.3 × 103). Two aspect ratios of the multiple elliptic nozzles (equivalent diameter, de, of a nozzle was 6 mm), namely a/b = 2.25 and 6.25, where a and b are the radii of the major and minor axes of an elliptic nozzle, respectively, and two nozzle azimuthal orientations, namely the same and alternate azimuthal orientation arrangements, were used. The mean and fluctuating velocities were measured using a constant-temperature hot-wire anemometer. The multiple jets located at the side of the ambient fluid were stretched due to interactions between the self-induced flow of an elliptic vortex ring and the secondary flow caused by the entrainment of the ambient fluid. For a/b = 2.25, axis switching occurred only once in the range of 1 < x/de ≤ 3 for both nozzle azimuthal orientations. For a/b = 6.25 and the same azimuthal orientation arrangement, axis switching occurred only once at 3 < x/de ≤ 5; axis switching did not occur for the alternate azimuthal orientation arrangement. Thus, the flow characteristics of multiple elliptic jets are influenced by the azimuthal orientation of adjoining nozzles.\",\"PeriodicalId\":44704,\"journal\":{\"name\":\"Journal of Fluid Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ajkfluids2019-5255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-5255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Influence of nozzle aspect ratio and orientation on flow characteristics of multiple elliptic jets
An experimental study is conducted to investigate the flow characteristics of multiple elliptic jets issuing from a 6 × 6 nozzle array at a relatively low-Reynolds number (Re = 4.3 × 103). Two aspect ratios of the multiple elliptic nozzles (equivalent diameter, de, of a nozzle was 6 mm), namely a/b = 2.25 and 6.25, where a and b are the radii of the major and minor axes of an elliptic nozzle, respectively, and two nozzle azimuthal orientations, namely the same and alternate azimuthal orientation arrangements, were used. The mean and fluctuating velocities were measured using a constant-temperature hot-wire anemometer. The multiple jets located at the side of the ambient fluid were stretched due to interactions between the self-induced flow of an elliptic vortex ring and the secondary flow caused by the entrainment of the ambient fluid. For a/b = 2.25, axis switching occurred only once in the range of 1 < x/de ≤ 3 for both nozzle azimuthal orientations. For a/b = 6.25 and the same azimuthal orientation arrangement, axis switching occurred only once at 3 < x/de ≤ 5; axis switching did not occur for the alternate azimuthal orientation arrangement. Thus, the flow characteristics of multiple elliptic jets are influenced by the azimuthal orientation of adjoining nozzles.
期刊介绍:
Journal of Fluid Science and Technology (JFST) is an international journal published by the Fluids Engineering Division in the Japan Society of Mechanical Engineers (JSME). JSME had been publishing Bulletin of the JSME (1958-1986) and JSME International Journal (1987-2006) by the continuous volume numbers. Considering the recent circumstances of the academic journals in the field of mechanical engineering, JSME reorganized the journal editorial system. Namely, JSME discontinued former International Journals and projected new publications from the divisions belonging to JSME. The Fluids Engineering Division acted quickly among all divisions and launched the premiere issue of JFST in January 2006. JFST aims at contributing to the development of fluid engineering by publishing superior papers of the scientific and technological studies in this field. The editorial committee will make all efforts for promoting strictly fair and speedy review for submitted articles. All JFST papers will be available for free at the website of J-STAGE (http://www.i-product.biz/jsme/eng/), which is hosted by Japan Science and Technology Agency (JST). Thus papers can be accessed worldwide by lead scientists and engineers. In addition, authors can express their results variedly by high-quality color drawings and pictures. JFST invites the submission of original papers on wide variety of fields related to fluid mechanics and fluid engineering. The topics to be treated should be corresponding to the following keywords of the Fluids Engineering Division of the JSME. Basic keywords include: turbulent flow; multiphase flow; non-Newtonian fluids; functional fluids; quantum and molecular dynamics; wave; acoustics; vibration; free surface flows; cavitation; fluid machinery; computational fluid dynamics (CFD); experimental fluid dynamics (EFD); Bio-fluid.