用快速傅立叶变换计算经典风险模型下的最终破产概率和其他一些精算量

Q4 Mathematics
Jagriti Das
{"title":"用快速傅立叶变换计算经典风险模型下的最终破产概率和其他一些精算量","authors":"Jagriti Das","doi":"10.3233/mas-220004","DOIUrl":null,"url":null,"abstract":"The Probability of ultimate ruin under the classical risk model is obtained as a solution of an integro -differential equation involving convolutions and we have used Fast Fourier Transform (FFT) to obtain the approximate values of the probability of ultimate ruin from this integro -differential equation under the situation when the claim severity is modelled by the Mixture of 3 Exponentials and the Weibull distribution. Another application of FFT in ruin theory is shown by means of applying it to obtain the quantiles of the aggregate claim distribution under these claim severity distributions. Extension of the application of FFT is shown by using it to obtain the first moment of the time to ruin under the classical risk model for these distributions. The distributions which have been used are such that one is light tailed and the another is heavy tailed so that a comparison can be made between them on the precision of the actuarial quantities obtained through FFT. FFT has been found to be efficient in obtaining these actuarial quantities when used in conjunction with certain modifications like exponential tilting to control the aliasing error.","PeriodicalId":35000,"journal":{"name":"Model Assisted Statistics and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computation of the probability of ultimate ruin and some other actuarial quantities under the classical risk model via Fast Fourier Transform\",\"authors\":\"Jagriti Das\",\"doi\":\"10.3233/mas-220004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Probability of ultimate ruin under the classical risk model is obtained as a solution of an integro -differential equation involving convolutions and we have used Fast Fourier Transform (FFT) to obtain the approximate values of the probability of ultimate ruin from this integro -differential equation under the situation when the claim severity is modelled by the Mixture of 3 Exponentials and the Weibull distribution. Another application of FFT in ruin theory is shown by means of applying it to obtain the quantiles of the aggregate claim distribution under these claim severity distributions. Extension of the application of FFT is shown by using it to obtain the first moment of the time to ruin under the classical risk model for these distributions. The distributions which have been used are such that one is light tailed and the another is heavy tailed so that a comparison can be made between them on the precision of the actuarial quantities obtained through FFT. FFT has been found to be efficient in obtaining these actuarial quantities when used in conjunction with certain modifications like exponential tilting to control the aliasing error.\",\"PeriodicalId\":35000,\"journal\":{\"name\":\"Model Assisted Statistics and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Model Assisted Statistics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/mas-220004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Assisted Statistics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mas-220004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

经典风险模型下的最终破产概率是作为一个包含卷积的积分微分方程的解获得的,我们使用快速傅立叶变换(FFT)从该积分微分方程中获得了在索赔严重性由3个指数和威布尔分布。FFT在破产理论中的另一个应用是通过应用它来获得在这些索赔严重性分布下的总索赔分布的分位数。在这些分布的经典风险模型下,通过使用FFT来获得破产时间的第一时刻,展示了FFT应用的扩展。已经使用的分布是这样的,一个是轻尾分布,另一个是重尾分布,从而可以在它们之间对通过FFT获得的精算量的精度进行比较。已经发现,当与某些修改(如指数倾斜)结合使用以控制混叠误差时,FFT在获得这些精算量方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computation of the probability of ultimate ruin and some other actuarial quantities under the classical risk model via Fast Fourier Transform
The Probability of ultimate ruin under the classical risk model is obtained as a solution of an integro -differential equation involving convolutions and we have used Fast Fourier Transform (FFT) to obtain the approximate values of the probability of ultimate ruin from this integro -differential equation under the situation when the claim severity is modelled by the Mixture of 3 Exponentials and the Weibull distribution. Another application of FFT in ruin theory is shown by means of applying it to obtain the quantiles of the aggregate claim distribution under these claim severity distributions. Extension of the application of FFT is shown by using it to obtain the first moment of the time to ruin under the classical risk model for these distributions. The distributions which have been used are such that one is light tailed and the another is heavy tailed so that a comparison can be made between them on the precision of the actuarial quantities obtained through FFT. FFT has been found to be efficient in obtaining these actuarial quantities when used in conjunction with certain modifications like exponential tilting to control the aliasing error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Model Assisted Statistics and Applications
Model Assisted Statistics and Applications Mathematics-Applied Mathematics
CiteScore
1.00
自引率
0.00%
发文量
26
期刊介绍: Model Assisted Statistics and Applications is a peer reviewed international journal. Model Assisted Statistics means an improvement of inference and analysis by use of correlated information, or an underlying theoretical or design model. This might be the design, adjustment, estimation, or analytical phase of statistical project. This information may be survey generated or coming from an independent source. Original papers in the field of sampling theory, econometrics, time-series, design of experiments, and multivariate analysis will be preferred. Papers of both applied and theoretical topics are acceptable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信