流上并环的渐近性态

Q2 Mathematics
M. Lipatov
{"title":"流上并环的渐近性态","authors":"M. Lipatov","doi":"10.1090/mosc/320","DOIUrl":null,"url":null,"abstract":"In 1968, V. I. Oseledets formulated the question of the convergence in Birkhoff’s theorem and in the multiplicative ergodic theorem for measurable cocycles over flows, under the condition of integrability at any fixed time. In 2016, A. M. Stepin and the author of this paper established convergence along subsets of density 1 on the time axis. Here we show that, moreover, convergence takes place modulo subsets of finite measure of the time axis.","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The asymptotic behaviour of cocycles over flows\",\"authors\":\"M. Lipatov\",\"doi\":\"10.1090/mosc/320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1968, V. I. Oseledets formulated the question of the convergence in Birkhoff’s theorem and in the multiplicative ergodic theorem for measurable cocycles over flows, under the condition of integrability at any fixed time. In 2016, A. M. Stepin and the author of this paper established convergence along subsets of density 1 on the time axis. Here we show that, moreover, convergence takes place modulo subsets of finite measure of the time axis.\",\"PeriodicalId\":37924,\"journal\":{\"name\":\"Transactions of the Moscow Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Moscow Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mosc/320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mosc/320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

1968年,V. I. Oseledets在任意固定时间可积条件下,给出了流上可测环的Birkhoff定理和乘法遍历定理的收敛性问题。2016年,A. M. Stepin和本文作者在时间轴上沿密度1的子集建立了收敛性。这里我们进一步证明,收敛发生于时间轴的有限测度的模子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The asymptotic behaviour of cocycles over flows
In 1968, V. I. Oseledets formulated the question of the convergence in Birkhoff’s theorem and in the multiplicative ergodic theorem for measurable cocycles over flows, under the condition of integrability at any fixed time. In 2016, A. M. Stepin and the author of this paper established convergence along subsets of density 1 on the time axis. Here we show that, moreover, convergence takes place modulo subsets of finite measure of the time axis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions of the Moscow Mathematical Society
Transactions of the Moscow Mathematical Society Mathematics-Mathematics (miscellaneous)
自引率
0.00%
发文量
19
期刊介绍: This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信