稳定随机游走的凸包

IF 1.1 3区 数学 Q2 STATISTICS & PROBABILITY
W. Cygan, Nikola Sandri'c, Stjepan vSebek
{"title":"稳定随机游走的凸包","authors":"W. Cygan, Nikola Sandri'c, Stjepan vSebek","doi":"10.1214/22-ejp826","DOIUrl":null,"url":null,"abstract":"We consider convex hulls of random walks whose steps belong to the domain of attraction of a stable law in Rd . We prove convergence of the convex hull in the space of all convex and compact subsets ofRd , equipped with the Hausdorff distance, towards the convex hull spanned by a path of the limit stable Lévy process. As an application, we establish convergence of (expected) intrinsic volumes under some mild moment/structure assumptions posed on the random walk.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convex hulls of stable random walks\",\"authors\":\"W. Cygan, Nikola Sandri'c, Stjepan vSebek\",\"doi\":\"10.1214/22-ejp826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider convex hulls of random walks whose steps belong to the domain of attraction of a stable law in Rd . We prove convergence of the convex hull in the space of all convex and compact subsets ofRd , equipped with the Hausdorff distance, towards the convex hull spanned by a path of the limit stable Lévy process. As an application, we establish convergence of (expected) intrinsic volumes under some mild moment/structure assumptions posed on the random walk.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ejp826\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ejp826","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑随机漫步的凸壳,其步长属于一个稳定律的吸引域。我们证明了凸壳在具有Hausdorff距离的所有rd的凸和紧子集的空间中,向由极限稳定lsamvy过程的路径张成的凸壳收敛。作为一个应用,我们在随机漫步的一些温和的矩/结构假设下建立了(期望的)内在体积的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convex hulls of stable random walks
We consider convex hulls of random walks whose steps belong to the domain of attraction of a stable law in Rd . We prove convergence of the convex hull in the space of all convex and compact subsets ofRd , equipped with the Hausdorff distance, towards the convex hull spanned by a path of the limit stable Lévy process. As an application, we establish convergence of (expected) intrinsic volumes under some mild moment/structure assumptions posed on the random walk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信