生物样品的3D打印:简明综述

IF 2.4 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Victoria X. Zhao, T. I. Wong, Xiaodong Zhou
{"title":"生物样品的3D打印:简明综述","authors":"Victoria X. Zhao, T. I. Wong, Xiaodong Zhou","doi":"10.1142/S2251237317400020","DOIUrl":null,"url":null,"abstract":"This paper reviews the recent development of 3D printing of biosamples, in terms of the 3D structure design, suitable printing technology, and available materials. Successfully printed 3D biosamples should possess the properties of high cell viability, vascularization and good biocompatibility. These goals are attained by printing the materials of hydrogels, polymers and cells, with a carefully selected 3D printer from the categories of inkjet printing, extrusion printing and laser printing, based on the uniqueness, advantages and disadvantages of these technologies. For recent developments, we introduce the 3D applications of creating scaffolds, printing cells for self-assembly and testing platforms. We foresee more bio-applications of 3D printing will be developed, with the advancements on materials and 3D printing machines.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":"05 1","pages":"1740002"},"PeriodicalIF":2.4000,"publicationDate":"2017-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251237317400020","citationCount":"1","resultStr":"{\"title\":\"3D Printing of Biosamples: A Concise Review\",\"authors\":\"Victoria X. Zhao, T. I. Wong, Xiaodong Zhou\",\"doi\":\"10.1142/S2251237317400020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reviews the recent development of 3D printing of biosamples, in terms of the 3D structure design, suitable printing technology, and available materials. Successfully printed 3D biosamples should possess the properties of high cell viability, vascularization and good biocompatibility. These goals are attained by printing the materials of hydrogels, polymers and cells, with a carefully selected 3D printer from the categories of inkjet printing, extrusion printing and laser printing, based on the uniqueness, advantages and disadvantages of these technologies. For recent developments, we introduce the 3D applications of creating scaffolds, printing cells for self-assembly and testing platforms. We foresee more bio-applications of 3D printing will be developed, with the advancements on materials and 3D printing machines.\",\"PeriodicalId\":16406,\"journal\":{\"name\":\"Journal of Molecular and Engineering Materials\",\"volume\":\"05 1\",\"pages\":\"1740002\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2017-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S2251237317400020\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular and Engineering Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2251237317400020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular and Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2251237317400020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文从生物样品的三维结构设计、合适的打印技术和可用的材料等方面综述了生物样品三维打印的最新进展。成功打印的3D生物样品应具有高细胞活力、血管化和良好的生物相容性。这些目标是通过使用从喷墨打印、挤出打印和激光打印类别中精心选择的3D打印机打印水凝胶、聚合物和细胞的材料来实现的,基于这些技术的独特性、优点和缺点。关于最近的发展,我们介绍了创建支架、打印自组装细胞和测试平台的3D应用。我们预计,随着材料和3D打印机器的进步,3D打印的更多生物应用将得到发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D Printing of Biosamples: A Concise Review
This paper reviews the recent development of 3D printing of biosamples, in terms of the 3D structure design, suitable printing technology, and available materials. Successfully printed 3D biosamples should possess the properties of high cell viability, vascularization and good biocompatibility. These goals are attained by printing the materials of hydrogels, polymers and cells, with a carefully selected 3D printer from the categories of inkjet printing, extrusion printing and laser printing, based on the uniqueness, advantages and disadvantages of these technologies. For recent developments, we introduce the 3D applications of creating scaffolds, printing cells for self-assembly and testing platforms. We foresee more bio-applications of 3D printing will be developed, with the advancements on materials and 3D printing machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular and Engineering Materials
Journal of Molecular and Engineering Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信