Ismael Tombakti, A. Adesina, Abdullah Alharith, Moataz M. Attallah, B. AlMangour
{"title":"激光模式和功率对直接能量沉积IN718合金摩擦学性能的影响","authors":"Ismael Tombakti, A. Adesina, Abdullah Alharith, Moataz M. Attallah, B. AlMangour","doi":"10.1115/1.4062361","DOIUrl":null,"url":null,"abstract":"\n The influence of laser modes and power on the tribological behavior of additively manufactured Inconel 718 alloys using the direct energy deposition (DED) technique was investigated. The samples were fabricated with continuous wave (CW) and pulse wave (PW) laser modes using 700, 900, and 1100 W laser power. The samples exhibited high hardness (3-5 GPa) and modulus (150 – 200 GPa) which increases with the laser power for CW and PW fabricated samples, and this was associated with the increasing densification and hardening secondary phase. The coefficient of friction increases with laser power for the CW samples but decreases for the PW samples. The samples showed an improved wear rate ranging between 25 and 70 × 10−5 mm3/Nm. Pulse wave samples demonstrated better tribological behavior compared to continuous wave at any laser power. The dominant wear mechanism is the three-body abrasive wear followed by localized and discrete adhesion wear mechanism.","PeriodicalId":17586,"journal":{"name":"Journal of Tribology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Laser Mode and Power on the Tribological Behavior of Additively Manufactured IN718 Alloy Fabricated by Direct Energy Deposition (DED)\",\"authors\":\"Ismael Tombakti, A. Adesina, Abdullah Alharith, Moataz M. Attallah, B. AlMangour\",\"doi\":\"10.1115/1.4062361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The influence of laser modes and power on the tribological behavior of additively manufactured Inconel 718 alloys using the direct energy deposition (DED) technique was investigated. The samples were fabricated with continuous wave (CW) and pulse wave (PW) laser modes using 700, 900, and 1100 W laser power. The samples exhibited high hardness (3-5 GPa) and modulus (150 – 200 GPa) which increases with the laser power for CW and PW fabricated samples, and this was associated with the increasing densification and hardening secondary phase. The coefficient of friction increases with laser power for the CW samples but decreases for the PW samples. The samples showed an improved wear rate ranging between 25 and 70 × 10−5 mm3/Nm. Pulse wave samples demonstrated better tribological behavior compared to continuous wave at any laser power. The dominant wear mechanism is the three-body abrasive wear followed by localized and discrete adhesion wear mechanism.\",\"PeriodicalId\":17586,\"journal\":{\"name\":\"Journal of Tribology-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tribology-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062361\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tribology-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062361","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Effect of Laser Mode and Power on the Tribological Behavior of Additively Manufactured IN718 Alloy Fabricated by Direct Energy Deposition (DED)
The influence of laser modes and power on the tribological behavior of additively manufactured Inconel 718 alloys using the direct energy deposition (DED) technique was investigated. The samples were fabricated with continuous wave (CW) and pulse wave (PW) laser modes using 700, 900, and 1100 W laser power. The samples exhibited high hardness (3-5 GPa) and modulus (150 – 200 GPa) which increases with the laser power for CW and PW fabricated samples, and this was associated with the increasing densification and hardening secondary phase. The coefficient of friction increases with laser power for the CW samples but decreases for the PW samples. The samples showed an improved wear rate ranging between 25 and 70 × 10−5 mm3/Nm. Pulse wave samples demonstrated better tribological behavior compared to continuous wave at any laser power. The dominant wear mechanism is the three-body abrasive wear followed by localized and discrete adhesion wear mechanism.
期刊介绍:
The Journal of Tribology publishes over 100 outstanding technical articles of permanent interest to the tribology community annually and attracts articles by tribologists from around the world. The journal features a mix of experimental, numerical, and theoretical articles dealing with all aspects of the field. In addition to being of interest to engineers and other scientists doing research in the field, the Journal is also of great importance to engineers who design or use mechanical components such as bearings, gears, seals, magnetic recording heads and disks, or prosthetic joints, or who are involved with manufacturing processes.
Scope: Friction and wear; Fluid film lubrication; Elastohydrodynamic lubrication; Surface properties and characterization; Contact mechanics; Magnetic recordings; Tribological systems; Seals; Bearing design and technology; Gears; Metalworking; Lubricants; Artificial joints