一种结合PLS和贝叶斯方法估计结构方程模型的混合方法

IF 0.6 Q4 STATISTICS & PROBABILITY
Ahmed Quazza, R. Noureddine, Zarrouk Zoubir
{"title":"一种结合PLS和贝叶斯方法估计结构方程模型的混合方法","authors":"Ahmed Quazza, R. Noureddine, Zarrouk Zoubir","doi":"10.1285/I20705948V11N2P577","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to provide a hybrid method combining the Partial Least Squares and the Bayesian approaches to estimate the Structural Equation Models. The aim advantage of this new method is to overcome the assumption of normality that is required in Bayesian approach. The results obtained from an application on simulated and on real data show that our proposed method outperforms both PLS and Bayesian approaches in terms of standard errors.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"11 1","pages":"577-607"},"PeriodicalIF":0.6000,"publicationDate":"2018-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1285/I20705948V11N2P577","citationCount":"5","resultStr":"{\"title\":\"A hybrid method combining the PLS and the Bayesian approaches to estimate the Structural Equation Models\",\"authors\":\"Ahmed Quazza, R. Noureddine, Zarrouk Zoubir\",\"doi\":\"10.1285/I20705948V11N2P577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to provide a hybrid method combining the Partial Least Squares and the Bayesian approaches to estimate the Structural Equation Models. The aim advantage of this new method is to overcome the assumption of normality that is required in Bayesian approach. The results obtained from an application on simulated and on real data show that our proposed method outperforms both PLS and Bayesian approaches in terms of standard errors.\",\"PeriodicalId\":44770,\"journal\":{\"name\":\"Electronic Journal of Applied Statistical Analysis\",\"volume\":\"11 1\",\"pages\":\"577-607\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1285/I20705948V11N2P577\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Applied Statistical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1285/I20705948V11N2P577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V11N2P577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

摘要

本文的目的是提供一种结合偏最小二乘法和贝叶斯方法的混合方法来估计结构方程模型。该方法的主要优点是克服了贝叶斯方法的正态性假设。在模拟和实际数据上的应用结果表明,我们提出的方法在标准误差方面优于PLS和贝叶斯方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid method combining the PLS and the Bayesian approaches to estimate the Structural Equation Models
The purpose of this paper is to provide a hybrid method combining the Partial Least Squares and the Bayesian approaches to estimate the Structural Equation Models. The aim advantage of this new method is to overcome the assumption of normality that is required in Bayesian approach. The results obtained from an application on simulated and on real data show that our proposed method outperforms both PLS and Bayesian approaches in terms of standard errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信