完全非线性椭圆型方程的分数阶Sobolev正则性

IF 2.1 2区 数学 Q1 MATHEMATICS
Edgard A. Pimentel, Makson S. Santos, E. Teixeira
{"title":"完全非线性椭圆型方程的分数阶Sobolev正则性","authors":"Edgard A. Pimentel, Makson S. Santos, E. Teixeira","doi":"10.1080/03605302.2022.2059676","DOIUrl":null,"url":null,"abstract":"Abstract We prove higher-order fractional Sobolev regularity for fully nonlinear, uniformly elliptic equations in the presence of unbounded source terms. More precisely, we show the existence of a universal number depending only on ellipticity constants and dimension, such that if u is a viscosity solution of then, with appropriate estimates. Our strategy suggests a sort of fractional feature of fully nonlinear diffusion processes, as what we actually show is that for a universal constant We believe our techniques are flexible and can be adapted to various models and contexts.","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":"47 1","pages":"1539 - 1558"},"PeriodicalIF":2.1000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fractional Sobolev regularity for fully nonlinear elliptic equations\",\"authors\":\"Edgard A. Pimentel, Makson S. Santos, E. Teixeira\",\"doi\":\"10.1080/03605302.2022.2059676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove higher-order fractional Sobolev regularity for fully nonlinear, uniformly elliptic equations in the presence of unbounded source terms. More precisely, we show the existence of a universal number depending only on ellipticity constants and dimension, such that if u is a viscosity solution of then, with appropriate estimates. Our strategy suggests a sort of fractional feature of fully nonlinear diffusion processes, as what we actually show is that for a universal constant We believe our techniques are flexible and can be adapted to various models and contexts.\",\"PeriodicalId\":50657,\"journal\":{\"name\":\"Communications in Partial Differential Equations\",\"volume\":\"47 1\",\"pages\":\"1539 - 1558\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2022.2059676\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2022.2059676","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要我们证明了存在无界源项的完全非线性一致椭圆方程的高阶分式Sobolev正则性。更准确地说,我们证明了一个仅取决于椭圆率常数和维数的普遍数的存在,因此,如果u是的粘度解,则具有适当的估计。我们的策略表明了完全非线性扩散过程的一种分数特征,因为我们实际上表明,对于一个普遍常数,我们相信我们的技术是灵活的,可以适应各种模型和环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Sobolev regularity for fully nonlinear elliptic equations
Abstract We prove higher-order fractional Sobolev regularity for fully nonlinear, uniformly elliptic equations in the presence of unbounded source terms. More precisely, we show the existence of a universal number depending only on ellipticity constants and dimension, such that if u is a viscosity solution of then, with appropriate estimates. Our strategy suggests a sort of fractional feature of fully nonlinear diffusion processes, as what we actually show is that for a universal constant We believe our techniques are flexible and can be adapted to various models and contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: This journal aims to publish high quality papers concerning any theoretical aspect of partial differential equations, as well as its applications to other areas of mathematics. Suitability of any paper is at the discretion of the editors. We seek to present the most significant advances in this central field to a wide readership which includes researchers and graduate students in mathematics and the more mathematical aspects of physics and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信