D. Blair, Amy Mann, Halah Mhanni, Safia Soussi, Matthew Loxley
{"title":"不凉爽:加拿大北极地区寒冷天气的损失","authors":"D. Blair, Amy Mann, Halah Mhanni, Safia Soussi, Matthew Loxley","doi":"10.1080/07055900.2021.1915238","DOIUrl":null,"url":null,"abstract":"ABSTRACT Most studies of climate change in the Arctic report how much warmer the climate is getting. In this study we use 1950–2020 daily observed minimum temperatures at 34 weather stations in Canada’s north to examine how rapidly the region is losing annual occurrences of cold weather (−30°C or colder). Kendall–Theil trend analysis is used to assess the strength and significance of trends. Twenty-nine of the stations were found to have significant negative trends, with an average of 4.89 fewer annual cold days per decade; on average, the stations have lost over 40% of their cold days in recent decades. An ensemble of downscaled Coupled Model Intercomparison Project, phase 5 (CMIP5) models is used to show how the numbers of cold days are projected to change in the coming decades with the representative concentration pathway (RCP4.5 and RCP8.5) scenarios. Finally, we discuss the implications of the loss of cold weather in the Canadian Arctic and beyond.","PeriodicalId":55434,"journal":{"name":"Atmosphere-Ocean","volume":"59 1","pages":"93 - 106"},"PeriodicalIF":1.6000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07055900.2021.1915238","citationCount":"0","resultStr":"{\"title\":\"Not Cool: On the Loss of Cold Weather in the Canadian Arctic\",\"authors\":\"D. Blair, Amy Mann, Halah Mhanni, Safia Soussi, Matthew Loxley\",\"doi\":\"10.1080/07055900.2021.1915238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Most studies of climate change in the Arctic report how much warmer the climate is getting. In this study we use 1950–2020 daily observed minimum temperatures at 34 weather stations in Canada’s north to examine how rapidly the region is losing annual occurrences of cold weather (−30°C or colder). Kendall–Theil trend analysis is used to assess the strength and significance of trends. Twenty-nine of the stations were found to have significant negative trends, with an average of 4.89 fewer annual cold days per decade; on average, the stations have lost over 40% of their cold days in recent decades. An ensemble of downscaled Coupled Model Intercomparison Project, phase 5 (CMIP5) models is used to show how the numbers of cold days are projected to change in the coming decades with the representative concentration pathway (RCP4.5 and RCP8.5) scenarios. Finally, we discuss the implications of the loss of cold weather in the Canadian Arctic and beyond.\",\"PeriodicalId\":55434,\"journal\":{\"name\":\"Atmosphere-Ocean\",\"volume\":\"59 1\",\"pages\":\"93 - 106\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07055900.2021.1915238\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere-Ocean\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/07055900.2021.1915238\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere-Ocean","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/07055900.2021.1915238","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Not Cool: On the Loss of Cold Weather in the Canadian Arctic
ABSTRACT Most studies of climate change in the Arctic report how much warmer the climate is getting. In this study we use 1950–2020 daily observed minimum temperatures at 34 weather stations in Canada’s north to examine how rapidly the region is losing annual occurrences of cold weather (−30°C or colder). Kendall–Theil trend analysis is used to assess the strength and significance of trends. Twenty-nine of the stations were found to have significant negative trends, with an average of 4.89 fewer annual cold days per decade; on average, the stations have lost over 40% of their cold days in recent decades. An ensemble of downscaled Coupled Model Intercomparison Project, phase 5 (CMIP5) models is used to show how the numbers of cold days are projected to change in the coming decades with the representative concentration pathway (RCP4.5 and RCP8.5) scenarios. Finally, we discuss the implications of the loss of cold weather in the Canadian Arctic and beyond.
期刊介绍:
Atmosphere-Ocean is the principal scientific journal of the Canadian Meteorological and Oceanographic Society (CMOS). It contains results of original research, survey articles, notes and comments on published papers in all fields of the atmospheric, oceanographic and hydrological sciences. Arctic, coastal and mid- to high-latitude regions are areas of particular interest. Applied or fundamental research contributions in English or French on the following topics are welcomed:
climate and climatology;
observation technology, remote sensing;
forecasting, modelling, numerical methods;
physics, dynamics, chemistry, biogeochemistry;
boundary layers, pollution, aerosols;
circulation, cloud physics, hydrology, air-sea interactions;
waves, ice, energy exchange and related environmental topics.