定义整数线性规划的正交阵列的线性规划松弛置换对称群

Q1 Mathematics
David M. Arquette, D. Bulutoglu
{"title":"定义整数线性规划的正交阵列的线性规划松弛置换对称群","authors":"David M. Arquette, D. Bulutoglu","doi":"10.1112/S1461157016000085","DOIUrl":null,"url":null,"abstract":"There is always a natural embedding of $S_{s}\\wr S_{k}$\n into the linear programming (LP) relaxation permutation symmetry group of an orthogonal array integer linear programming (ILP) formulation with equality constraints. The point of this paper is to prove that in the $2$\n -level, strength- $1$\n case the LP relaxation permutation symmetry group of this formulation is isomorphic to $S_{2}\\wr S_{k}$\n for all $k$\n , and in the $2$\n -level, strength- $2$\n case it is isomorphic to $S_{2}^{k}\\rtimes S_{k+1}$\n for $k\\geqslant 4$\n . The strength- $2$\n result reveals previously unknown permutation symmetries that cannot be captured by the natural embedding of $S_{2}\\wr S_{k}$\n . We also conjecture a complete characterization of the LP relaxation permutation symmetry group of the ILP formulation. Supplementary materials are available with this article.","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"19 1","pages":"206-216"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/S1461157016000085","citationCount":"4","resultStr":"{\"title\":\"The Linear Programming Relaxation Permutation Symmetry Group of an Orthogonal Array Defining Integer Linear Program\",\"authors\":\"David M. Arquette, D. Bulutoglu\",\"doi\":\"10.1112/S1461157016000085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is always a natural embedding of $S_{s}\\\\wr S_{k}$\\n into the linear programming (LP) relaxation permutation symmetry group of an orthogonal array integer linear programming (ILP) formulation with equality constraints. The point of this paper is to prove that in the $2$\\n -level, strength- $1$\\n case the LP relaxation permutation symmetry group of this formulation is isomorphic to $S_{2}\\\\wr S_{k}$\\n for all $k$\\n , and in the $2$\\n -level, strength- $2$\\n case it is isomorphic to $S_{2}^{k}\\\\rtimes S_{k+1}$\\n for $k\\\\geqslant 4$\\n . The strength- $2$\\n result reveals previously unknown permutation symmetries that cannot be captured by the natural embedding of $S_{2}\\\\wr S_{k}$\\n . We also conjecture a complete characterization of the LP relaxation permutation symmetry group of the ILP formulation. Supplementary materials are available with this article.\",\"PeriodicalId\":54381,\"journal\":{\"name\":\"Lms Journal of Computation and Mathematics\",\"volume\":\"19 1\",\"pages\":\"206-216\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1112/S1461157016000085\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lms Journal of Computation and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/S1461157016000085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S1461157016000085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

具有相等约束的正交阵列整数线性规划(ILP)公式的线性规划(LP)松弛置换对称群中总是有$S_{s}\wr S_{k}$的自然嵌入。本文的目的是证明在$2$ -级强度- $1$情况下,该公式的LP松弛置换对称群对所有$k$都同构于$S_{2}\wr S_{k}$,在$2$ -级强度- $2$情况下,对$k\geqslant 4$都同构于$S_{2}^{k}\rtimes S_{k+1}$。强度- $2$结果揭示了以前未知的排列对称性,这些对称性不能被$S_{2}\wr S_{k}$的自然嵌入所捕获。我们还推测了ILP公式的LP松弛置换对称群的完整表征。本文附有补充材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Linear Programming Relaxation Permutation Symmetry Group of an Orthogonal Array Defining Integer Linear Program
There is always a natural embedding of $S_{s}\wr S_{k}$ into the linear programming (LP) relaxation permutation symmetry group of an orthogonal array integer linear programming (ILP) formulation with equality constraints. The point of this paper is to prove that in the $2$ -level, strength- $1$ case the LP relaxation permutation symmetry group of this formulation is isomorphic to $S_{2}\wr S_{k}$ for all $k$ , and in the $2$ -level, strength- $2$ case it is isomorphic to $S_{2}^{k}\rtimes S_{k+1}$ for $k\geqslant 4$ . The strength- $2$ result reveals previously unknown permutation symmetries that cannot be captured by the natural embedding of $S_{2}\wr S_{k}$ . We also conjecture a complete characterization of the LP relaxation permutation symmetry group of the ILP formulation. Supplementary materials are available with this article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lms Journal of Computation and Mathematics
Lms Journal of Computation and Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信