关于广义布朗桥的一些结果

IF 0.3 Q4 STATISTICS & PROBABILITY
S. Hadiri, A. Sghir
{"title":"关于广义布朗桥的一些结果","authors":"S. Hadiri, A. Sghir","doi":"10.1515/rose-2022-2082","DOIUrl":null,"url":null,"abstract":"Abstract The generalized Brownian bridge X a , b , T {X^{a,b,T}} from a to b of length T was used in several fields such as in mathematical finance, biology and statistics. In this paper, we study the following stochastic properties and characteristics of this process: The Hölder continuity, the self-similarity, the quadratic variation, the Markov property, the stationarity of the increments, and the α-differentiability of the trajectories.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"30 1","pages":"197 - 204"},"PeriodicalIF":0.3000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some results on the generalized Brownian bridge\",\"authors\":\"S. Hadiri, A. Sghir\",\"doi\":\"10.1515/rose-2022-2082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The generalized Brownian bridge X a , b , T {X^{a,b,T}} from a to b of length T was used in several fields such as in mathematical finance, biology and statistics. In this paper, we study the following stochastic properties and characteristics of this process: The Hölder continuity, the self-similarity, the quadratic variation, the Markov property, the stationarity of the increments, and the α-differentiability of the trajectories.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"30 1\",\"pages\":\"197 - 204\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2022-2082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2022-2082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要长度为T的广义布朗桥Xa,b,T{X^{a,b、T}}用于数学金融、生物学和统计学等领域。在本文中,我们研究了这个过程的以下随机性质和特征:Hölder连续性、自相似性、二次变分、马尔可夫性质、增量的平稳性和轨迹的α-可微性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some results on the generalized Brownian bridge
Abstract The generalized Brownian bridge X a , b , T {X^{a,b,T}} from a to b of length T was used in several fields such as in mathematical finance, biology and statistics. In this paper, we study the following stochastic properties and characteristics of this process: The Hölder continuity, the self-similarity, the quadratic variation, the Markov property, the stationarity of the increments, and the α-differentiability of the trajectories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信