非紧化类空柯西超曲面的规定平均曲率流

IF 0.6 3区 数学 Q3 MATHEMATICS
Giuseppe Gentile, Boris Vertman
{"title":"非紧化类空柯西超曲面的规定平均曲率流","authors":"Giuseppe Gentile,&nbsp;Boris Vertman","doi":"10.1007/s10455-023-09914-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider the prescribed mean curvature flow of a non-compact space-like Cauchy hypersurface of bounded geometry in a generalized Robertson–Walker space-time. We prove that the flow preserves the space-likeness condition and exists for infinite time. We also prove convergence in the setting of manifolds with boundary. Our discussion generalizes previous work by Ecker, Huisken, Gerhardt and others with respect to a crucial aspects: we consider any non-compact Cauchy hypersurface under the assumption of bounded geometry. Moreover, we specialize the aforementioned works by considering globally hyperbolic Lorentzian space-times equipped with a specific class of warped product metrics.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09914-z.pdf","citationCount":"2","resultStr":"{\"title\":\"Prescribed mean curvature flow of non-compact space-like Cauchy hypersurfaces\",\"authors\":\"Giuseppe Gentile,&nbsp;Boris Vertman\",\"doi\":\"10.1007/s10455-023-09914-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we consider the prescribed mean curvature flow of a non-compact space-like Cauchy hypersurface of bounded geometry in a generalized Robertson–Walker space-time. We prove that the flow preserves the space-likeness condition and exists for infinite time. We also prove convergence in the setting of manifolds with boundary. Our discussion generalizes previous work by Ecker, Huisken, Gerhardt and others with respect to a crucial aspects: we consider any non-compact Cauchy hypersurface under the assumption of bounded geometry. Moreover, we specialize the aforementioned works by considering globally hyperbolic Lorentzian space-times equipped with a specific class of warped product metrics.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-023-09914-z.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09914-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09914-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们考虑了广义Robertson–Walker时空中有界几何的非紧类柯西超曲面的规定平均曲率流。我们证明了流动保持了空间相似性条件,并且存在于无限长的时间内。我们还证明了具有边界的流形集的收敛性。我们的讨论概括了Ecker、Huisken、Gerhardt和其他人以前关于一个关键方面的工作:我们在有界几何的假设下考虑任何非紧Cauchy超曲面。此外,我们通过考虑配备有一类特定翘曲积度量的全局双曲洛伦兹时空来专门化上述工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prescribed mean curvature flow of non-compact space-like Cauchy hypersurfaces

In this paper we consider the prescribed mean curvature flow of a non-compact space-like Cauchy hypersurface of bounded geometry in a generalized Robertson–Walker space-time. We prove that the flow preserves the space-likeness condition and exists for infinite time. We also prove convergence in the setting of manifolds with boundary. Our discussion generalizes previous work by Ecker, Huisken, Gerhardt and others with respect to a crucial aspects: we consider any non-compact Cauchy hypersurface under the assumption of bounded geometry. Moreover, we specialize the aforementioned works by considering globally hyperbolic Lorentzian space-times equipped with a specific class of warped product metrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信