反离子对石英碱溶机理的影响

IF 1.3 4区 工程技术 Q4 CHEMISTRY, PHYSICAL
Yuangen Yao, Yun Tang, Yong Yang, Guoxiang Li, Bo Wu, Wendan Dai
{"title":"反离子对石英碱溶机理的影响","authors":"Yuangen Yao, Yun Tang, Yong Yang, Guoxiang Li, Bo Wu, Wendan Dai","doi":"10.37190/ppmp/160038","DOIUrl":null,"url":null,"abstract":"In gold ore, quartz plays an important role in mineral formation by acting as the follower. Understanding counterion release, transport, and deposition in alkali solution is a prerequisite for evaluating the potential role of gold separate from quartz deposits in pretreatment. In this work, the aggregation, retention, and release of counterion in alkali solution media were investigated by kinetic research and pure mineral experiments, the correlation and mechanism of these processes were revealed by combining geochemical theory, interaction energy calculation, and quantum chemistry. The results showed that the retention and release of counterion were closely related to the dissolution and corrosion rate of quartz. The NH4+ and Fe2+ with higher mineral affinity reduced the quartz stability, and the dispersion stability and mobility of the quartz were greatly improved by an alkaline substance due to the enhancement of steric hindrance effects. Quantum chemical calculation results show that ammonium ion promotes the dissolution of quartz stronger than ferrous ion, which is mainly reflected in reducing the activation energy required for the formation of transition state (TS1), which can be verified by kinetic calculation. These findings provide essential insight into the extraction of gold coated by quartz as well as a vital reference for the experiment of gold-loaded quartz leaching in mineral processing.","PeriodicalId":49137,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counterion effects on the alkali dissolution mechanism of quartz\",\"authors\":\"Yuangen Yao, Yun Tang, Yong Yang, Guoxiang Li, Bo Wu, Wendan Dai\",\"doi\":\"10.37190/ppmp/160038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In gold ore, quartz plays an important role in mineral formation by acting as the follower. Understanding counterion release, transport, and deposition in alkali solution is a prerequisite for evaluating the potential role of gold separate from quartz deposits in pretreatment. In this work, the aggregation, retention, and release of counterion in alkali solution media were investigated by kinetic research and pure mineral experiments, the correlation and mechanism of these processes were revealed by combining geochemical theory, interaction energy calculation, and quantum chemistry. The results showed that the retention and release of counterion were closely related to the dissolution and corrosion rate of quartz. The NH4+ and Fe2+ with higher mineral affinity reduced the quartz stability, and the dispersion stability and mobility of the quartz were greatly improved by an alkaline substance due to the enhancement of steric hindrance effects. Quantum chemical calculation results show that ammonium ion promotes the dissolution of quartz stronger than ferrous ion, which is mainly reflected in reducing the activation energy required for the formation of transition state (TS1), which can be verified by kinetic calculation. These findings provide essential insight into the extraction of gold coated by quartz as well as a vital reference for the experiment of gold-loaded quartz leaching in mineral processing.\",\"PeriodicalId\":49137,\"journal\":{\"name\":\"Physicochemical Problems of Mineral Processing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physicochemical Problems of Mineral Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.37190/ppmp/160038\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.37190/ppmp/160038","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在金矿中,石英起着跟随者的作用,在成矿过程中发挥着重要作用。了解反离子在碱溶液中的释放、传输和沉积是评估从石英矿床中分离出的金在预处理中的潜在作用的先决条件。本工作通过动力学研究和纯矿物实验研究了反离子在碱溶液介质中的聚集、保留和释放,并结合地球化学理论、相互作用能计算和量子化学揭示了这些过程的相关性和机理。结果表明,反离子的保留和释放与石英的溶解和腐蚀速率密切相关。具有较高矿物亲和力的NH4+和Fe2+降低了石英的稳定性,并且由于空间位阻效应的增强,碱性物质大大提高了石英的分散稳定性和迁移率。量子化学计算结果表明,铵离子比亚铁离子更强地促进石英的溶解,这主要体现在降低了形成过渡态(TS1)所需的活化能,这可以通过动力学计算得到验证。这些发现为石英包被金的提取提供了重要的见解,也为矿物加工中的载金石英浸出实验提供了重要参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counterion effects on the alkali dissolution mechanism of quartz
In gold ore, quartz plays an important role in mineral formation by acting as the follower. Understanding counterion release, transport, and deposition in alkali solution is a prerequisite for evaluating the potential role of gold separate from quartz deposits in pretreatment. In this work, the aggregation, retention, and release of counterion in alkali solution media were investigated by kinetic research and pure mineral experiments, the correlation and mechanism of these processes were revealed by combining geochemical theory, interaction energy calculation, and quantum chemistry. The results showed that the retention and release of counterion were closely related to the dissolution and corrosion rate of quartz. The NH4+ and Fe2+ with higher mineral affinity reduced the quartz stability, and the dispersion stability and mobility of the quartz were greatly improved by an alkaline substance due to the enhancement of steric hindrance effects. Quantum chemical calculation results show that ammonium ion promotes the dissolution of quartz stronger than ferrous ion, which is mainly reflected in reducing the activation energy required for the formation of transition state (TS1), which can be verified by kinetic calculation. These findings provide essential insight into the extraction of gold coated by quartz as well as a vital reference for the experiment of gold-loaded quartz leaching in mineral processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physicochemical Problems of Mineral Processing
Physicochemical Problems of Mineral Processing CHEMISTRY, PHYSICAL-MINING & MINERAL PROCESSING
自引率
6.70%
发文量
99
期刊介绍: Physicochemical Problems of Mineral Processing is an international, open access journal which covers theoretical approaches and their practical applications in all aspects of mineral processing and extractive metallurgy. Criteria for publication in the Physicochemical Problems of Mineral Processing journal are novelty, quality and current interest. Manuscripts which only make routine use of minor extensions to well established methodologies are not appropriate for the journal. Topics of interest Analytical techniques and applied mineralogy Computer applications Comminution, classification and sorting Froth flotation Solid-liquid separation Gravity concentration Magnetic and electric separation Hydro and biohydrometallurgy Extractive metallurgy Recycling and mineral wastes Environmental aspects of mineral processing and other mineral processing related subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信