Blaschke度量的极限

IF 2.3 1区 数学 Q1 MATHEMATICS
Charles Ouyang, Andrea Tamburelli
{"title":"Blaschke度量的极限","authors":"Charles Ouyang, Andrea Tamburelli","doi":"10.1215/00127094-2021-0027","DOIUrl":null,"url":null,"abstract":"We find a compactification of the $\\mathrm{SL}(3,\\mathbb{R})$-Hitchin component by studying the degeneration of the Blaschke metrics on the associated equivariant affine spheres. In the process, we establish the closure in the space of projectivized geodesic currents of the space of flat metrics induced by holomorphic cubic differentials on a Riemann surface.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Limits of Blaschke metrics\",\"authors\":\"Charles Ouyang, Andrea Tamburelli\",\"doi\":\"10.1215/00127094-2021-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We find a compactification of the $\\\\mathrm{SL}(3,\\\\mathbb{R})$-Hitchin component by studying the degeneration of the Blaschke metrics on the associated equivariant affine spheres. In the process, we establish the closure in the space of projectivized geodesic currents of the space of flat metrics induced by holomorphic cubic differentials on a Riemann surface.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2019-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2021-0027\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2021-0027","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 14

摘要

通过研究相关等变仿射球上Blaschke度量的退化,我们得到了$\ mathbb{SL}(3,\mathbb{R})$-Hitchin分量的紧化性。在此过程中,我们建立了由黎曼曲面上全纯三次微分导出的平面度量空间的投影测地线电流空间的闭包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limits of Blaschke metrics
We find a compactification of the $\mathrm{SL}(3,\mathbb{R})$-Hitchin component by studying the degeneration of the Blaschke metrics on the associated equivariant affine spheres. In the process, we establish the closure in the space of projectivized geodesic currents of the space of flat metrics induced by holomorphic cubic differentials on a Riemann surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信